Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Overview

Point-Based Modeling of Human Clothing

Paper | Project page | Video

This is an official PyTorch code repository of the paper "Point-Based Modeling of Human Clothing" (accepted to ICCV, 2021).

Setup

Build docker

  • Prerequisites: your nvidia driver should support cuda 10.2, Windows or Mac are not supported.
  • Clone repo:
    • git clone https://github.com/izakharkin/point_based_clothing.git
    • cd point_based_clothing
    • git submodule init && git submodule update
  • Docker setup:
  • Download 10_nvidia.json and place it in the docker/ folder
  • Create docker image:
    • Build on your own: run 2 commands
  • Inside the docker container: source activate pbc

Download data

  • Download the SMPL neutral model from SMPLify project page:
    • Register, go to the Downloads section, download SMPLIFY_CODE_V2.ZIP, and unpack it;
    • Move smplify_public/code/models/basicModel_neutral_lbs_10_207_0_v1.0.0.pkl to data/smpl_models/SMPL_NEUTRAL.pkl.
  • Download models checkpoints (~570 Mb): Google Drive and place them to the checkpoints/ folder;
  • Download a sample data we provide to check the appearance fitting (~480 Mb): Google Drive, unpack it, and place psp/ folder to the samples/ folder.

Run

We provide scripts for geometry fitting and inference and appearance fitting and inference.

Geometry (outfit code)

Fitting

To fit a style outfit code to a single image one can run:

python fit_outfit_code.py --config_name=outfit_code/psp

The learned outfit codes are saved to out/outfit_code/outfit_codes_<dset_name>.pkl by default. The visualization of the process is in out/outfit_code/vis_<dset_name>/:

  • Coarse fitting stage: four outfit codes initialized randomly and being optimized simultaneosly.

outfit_code_fitting_coarse

  • Fine fitting stage: mean of found outfit codes is being optimized further to possibly imrove the reconstruction.

outfit_code_fitting_fine

Note: visibility_thr hyperparameter in fit_outfit_code.py may affect the quality of result point cloud (e.f. make it more sparse). Feel free to tune it if the result seems not perfect.

vis_thr_360

Inference

outfit_code_inference

To further infer the fitted outfit style on the train or on new subjects please see infer_outfit_code.ipynb. To run jupyter notebook server from the docker, run this inside the container:

jupyter notebook --ip=0.0.0.0 --port=8087 --no-browser 

Appearance (neural descriptors)

Fitting

To fit a clothing appearance to a sequence of frames one can run:

python fit_appearance.py --config_name=appearance/psp_male-3-casual

The learned neural descriptors ntex0_<epoch>.pth and neural rendering network weights model0_<epoch>.pth are saved to out/appearance/<dset_name>/<subject_id>/<experiment_dir>/checkpoints/ by default. The visualization of the process is in out/appearance/<dset_name>/<subject_id>/<experiment_dir>/visuals/.

Inference

appearance_inference

To further infer the fitted clothing point cloud and its appearance on the train or on new subjects please see infer_appearance.ipynb. To run jupyter notebook server from the docker, run this inside the container:

jupyter notebook --ip=0.0.0.0 --port=8087 --no-browser 

Citation

If you find our work helpful, please do not hesitate to cite us:

@InProceedings{Zakharkin_2021_ICCV,
    author    = {Zakharkin, Ilya and Mazur, Kirill and Grigorev, Artur and Lempitsky, Victor},
    title     = {Point-Based Modeling of Human Clothing},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {14718-14727}
}

Non-commercial use only.

Related projects

We also thank the authors of Cloth3D and PeopleSnapshot datasets.

Owner
Visual Understanding Lab @ Samsung AI Center Moscow
Visual Understanding Lab @ Samsung AI Center Moscow
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

PointRCNN PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Code release for the paper PointRCNN:3D Object Proposal Generation a

Shaoshuai Shi 1.5k Dec 27, 2022
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
Evolutionary Scale Modeling (esm): Pretrained language models for proteins

Evolutionary Scale Modeling This repository contains code and pre-trained weights for Transformer protein language models from Facebook AI Research, i

Meta Research 1.6k Jan 09, 2023
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
It's A ML based Web Site build with python and Django to find the breed of the dog

ML-Based-Dog-Breed-Identifier This is a Django Based Web Site To Identify the Breed of which your DOG belogs All You Need To Do is to Follow These Ste

Sanskar Dwivedi 2 Oct 12, 2022
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer This repository contains code to compute depth from a

Intelligent Systems Lab Org 2.3k Jan 01, 2023
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
This repository provides the code for MedViLL(Medical Vision Language Learner).

MedViLL This repository provides the code for MedViLL(Medical Vision Language Learner). Our proposed architecture MedViLL is a single BERT-based model

SuperSuperMoon 39 Jan 05, 2023
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

Official repository of the paper 'Essentials for Class Incremental Learning'

Essentials for Class Incremental Learning Official repository of the paper 'Essentials for Class Incremental Learning' This Pytorch repository contain

33 Nov 27, 2022
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Matthew Macy 606 Dec 21, 2022
This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

neon_course This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see

Nervana 92 Jan 03, 2023