Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Overview

Point-Based Modeling of Human Clothing

Paper | Project page | Video

This is an official PyTorch code repository of the paper "Point-Based Modeling of Human Clothing" (accepted to ICCV, 2021).

Setup

Build docker

  • Prerequisites: your nvidia driver should support cuda 10.2, Windows or Mac are not supported.
  • Clone repo:
    • git clone https://github.com/izakharkin/point_based_clothing.git
    • cd point_based_clothing
    • git submodule init && git submodule update
  • Docker setup:
  • Download 10_nvidia.json and place it in the docker/ folder
  • Create docker image:
    • Build on your own: run 2 commands
  • Inside the docker container: source activate pbc

Download data

  • Download the SMPL neutral model from SMPLify project page:
    • Register, go to the Downloads section, download SMPLIFY_CODE_V2.ZIP, and unpack it;
    • Move smplify_public/code/models/basicModel_neutral_lbs_10_207_0_v1.0.0.pkl to data/smpl_models/SMPL_NEUTRAL.pkl.
  • Download models checkpoints (~570 Mb): Google Drive and place them to the checkpoints/ folder;
  • Download a sample data we provide to check the appearance fitting (~480 Mb): Google Drive, unpack it, and place psp/ folder to the samples/ folder.

Run

We provide scripts for geometry fitting and inference and appearance fitting and inference.

Geometry (outfit code)

Fitting

To fit a style outfit code to a single image one can run:

python fit_outfit_code.py --config_name=outfit_code/psp

The learned outfit codes are saved to out/outfit_code/outfit_codes_<dset_name>.pkl by default. The visualization of the process is in out/outfit_code/vis_<dset_name>/:

  • Coarse fitting stage: four outfit codes initialized randomly and being optimized simultaneosly.

outfit_code_fitting_coarse

  • Fine fitting stage: mean of found outfit codes is being optimized further to possibly imrove the reconstruction.

outfit_code_fitting_fine

Note: visibility_thr hyperparameter in fit_outfit_code.py may affect the quality of result point cloud (e.f. make it more sparse). Feel free to tune it if the result seems not perfect.

vis_thr_360

Inference

outfit_code_inference

To further infer the fitted outfit style on the train or on new subjects please see infer_outfit_code.ipynb. To run jupyter notebook server from the docker, run this inside the container:

jupyter notebook --ip=0.0.0.0 --port=8087 --no-browser 

Appearance (neural descriptors)

Fitting

To fit a clothing appearance to a sequence of frames one can run:

python fit_appearance.py --config_name=appearance/psp_male-3-casual

The learned neural descriptors ntex0_<epoch>.pth and neural rendering network weights model0_<epoch>.pth are saved to out/appearance/<dset_name>/<subject_id>/<experiment_dir>/checkpoints/ by default. The visualization of the process is in out/appearance/<dset_name>/<subject_id>/<experiment_dir>/visuals/.

Inference

appearance_inference

To further infer the fitted clothing point cloud and its appearance on the train or on new subjects please see infer_appearance.ipynb. To run jupyter notebook server from the docker, run this inside the container:

jupyter notebook --ip=0.0.0.0 --port=8087 --no-browser 

Citation

If you find our work helpful, please do not hesitate to cite us:

@InProceedings{Zakharkin_2021_ICCV,
    author    = {Zakharkin, Ilya and Mazur, Kirill and Grigorev, Artur and Lempitsky, Victor},
    title     = {Point-Based Modeling of Human Clothing},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {14718-14727}
}

Non-commercial use only.

Related projects

We also thank the authors of Cloth3D and PeopleSnapshot datasets.

Owner
Visual Understanding Lab @ Samsung AI Center Moscow
Visual Understanding Lab @ Samsung AI Center Moscow
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
1st-in-MICCAI2020-CPM - Combined Radiology and Pathology Classification

Combined Radiology and Pathology Classification MICCAI 2020 Combined Radiology a

22 Dec 08, 2022
Pytorch implementation of NEGEV method. Paper: "Negative Evidence Matters in Interpretable Histology Image Classification".

Pytorch 1.10.0 code for: Negative Evidence Matters in Interpretable Histology Image Classification (https://arxiv. org/abs/xxxx.xxxxx) Citation: @arti

Soufiane Belharbi 4 Dec 01, 2022
Hyperbolic Image Segmentation, CVPR 2022

Hyperbolic Image Segmentation, CVPR 2022 This is the implementation of paper Hyperbolic Image Segmentation (CVPR 2022). Repository structure assets :

Mina Ghadimi Atigh 46 Dec 29, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
This repo contains the source code and a benchmark for predicting user's utilities with Machine Learning techniques for Computational Persuasion

Machine Learning for Argument-Based Computational Persuasion This repo contains the source code and a benchmark for predicting user's utilities with M

Ivan Donadello 4 Nov 07, 2022
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

567 Dec 26, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is

Stan 229 Dec 29, 2022
Pseudo-Visual Speech Denoising

Pseudo-Visual Speech Denoising This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021. Autho

Sindhu 94 Oct 22, 2022
Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstrac

2 Apr 14, 2022
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Tobias Hinz 181 Dec 27, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)

This is a playground for pytorch beginners, which contains predefined models on popular dataset. Currently we support mnist, svhn cifar10, cifar100 st

Aaron Chen 2.4k Dec 28, 2022
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
DeceFL: A Principled Decentralized Federated Learning Framework

DeceFL: A Principled Decentralized Federated Learning Framework This repository comprises codes that reproduce experiments in Ye, et al (2021), which

Huazhong Artificial Intelligence Lab (HAIL) 10 May 31, 2022
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022
Trajectory Variational Autoencder baseline for Multi-Agent Behavior challenge 2022

MABe_2022_TVAE: a Trajectory Variational Autoencoder baseline for the 2022 Multi-Agent Behavior challenge This repository contains jupyter notebooks t

Andrew Ulmer 15 Nov 08, 2022
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022