Implementation of TimeSformer, a pure attention-based solution for video classification

Overview

TimeSformer - Pytorch

Implementation of TimeSformer, a pure and simple attention-based solution for reaching SOTA on video classification. This repository will only house the best performing variant, 'Divided Space-Time Attention', which is nothing more than attention along the time axis before the spatial.

Install

$ pip install timesformer-pytorch

Usage

import torch
from timesformer_pytorch import TimeSformer

model = TimeSformer(
    dim = 512,
    image_size = 224,
    patch_size = 16,
    num_frames = 8,
    num_classes = 10,
    depth = 12,
    heads = 8,
    dim_head =  64,
    attn_dropout = 0.1,
    ff_dropout = 0.1
)

video = torch.randn(2, 8, 3, 224, 224) # (batch x frames x channels x height x width)
pred = model(video) # (2, 10)

Citations

@misc{bertasius2021spacetime,
    title   = {Is Space-Time Attention All You Need for Video Understanding?}, 
    author  = {Gedas Bertasius and Heng Wang and Lorenzo Torresani},
    year    = {2021},
    eprint  = {2102.05095},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Comments
  • How to deal with varying length video? Thanks

    How to deal with varying length video? Thanks

    Dear all, I am wondering if TimeSformer can handle different videos with diverse lengths? Is it possible to use mask as the original Transformer? Any ideas, thanks a lot.

    opened by junyongyou 2
  • fix runtime error in SpaceTime Attention

    fix runtime error in SpaceTime Attention

    There is a shape mismatch error in Attention. When we splice out the classification token from the first token of each sequence in q, k and v, the shape becomes (batch_size * num_heads, num_frames * num_patches - 1, head_dim). Then we try to reshape the tensor by taking out a factor of num_frames or num_patches (depending on whether it is space or time attention) from dimension 1. That doesn't work because we subtracted out the classification token.

    I found that performing the rearrange operation before splicing the token fixes the issue.

    I recreate the problem and illustrate the solution in this notebook: https://colab.research.google.com/drive/1lHFcn_vgSDJNSqxHy7rtqhMVxe0nUCMS?usp=sharing.

    By the way, thank you to @lucidrains; all of your implementations on attention-based models are helping me more than you know.

    opened by adam-mehdi 1
  • Update timesformer_pytorch.py

    Update timesformer_pytorch.py

    fixing issue for scaling

    File "/home/aarti9/.local/lib/python3.6/site-packages/timesformer_pytorch/timesformer_pytorch.py", line 82, in forward q *= self.scale

    RuntimeError: Output 0 of ViewBackward is a view and is being modified inplace. This view is an output of a function that returns multiple views. Inplace operators on such views is forbidden. You should replace the inplace operation by an out-of-place one.

    opened by aarti9 0
  • Fine-tune with new datasets

    Fine-tune with new datasets

    Thank you so much for your great effort. I can predict the images using the given .py files. But, I couldn't find train.py files, so how to fine-tune the network with new datasets? where should i define the image samples of the new dataset ?

    opened by Jeba-create 0
  • problem in timesformer_pytorch.py

    problem in timesformer_pytorch.py

    start from line 182 video = rearrange(video, 'b f c (h p1) (w p2) -> b (f h w) (p1 p2 c)', p1 = p, p2 = p) i think this should be video = rearrange(video, 'b f c (hp p1) (wp p2) -> b (f hp wp) (p1 p2 c)', p1 = p, p2 = p)

    opened by Weizhongjin 2
  • Imagenet Pretrained Weights

    Imagenet Pretrained Weights

    Thanks for the work! In their paper they say For all our experiments, we adopt the “Base” ViT model architecture (Dosovitskiy et al., 2020) pretrained on ImageNet.

    I know that you said the official weights trained on kinetics and such are not officially released yet. However, I am not interested in those but am actually in need of the initial weights of the network just based on ViT Imagenet pretraining. I need to train this implementation of yours starting from those. From what it looks like, you don't have weights for this implementation that come from imagenet pretraining, do you?

    opened by RaivoKoot 5
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
A 10000+ hours dataset for Chinese speech recognition

WenetSpeech Official website | Paper A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition Download Please visit the official website, rea

310 Jan 03, 2023
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
Layered Neural Atlases for Consistent Video Editing

Layered Neural Atlases for Consistent Video Editing Project Page | Paper This repository contains an implementation for the SIGGRAPH Asia 2021 paper L

Yoni Kasten 353 Dec 27, 2022
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

3 May 12, 2022
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
LSTM model trained on a small dataset of 3000 names written in PyTorch

LSTM model trained on a small dataset of 3000 names. Model generates names from model by selecting one out of top 3 letters suggested by model at a time until an EOS (End Of Sentence) character is no

Sahil Lamba 1 Dec 20, 2021
Code for SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021)

SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021) SyncTwin is a treatment effect estimation method tailored for observat

Zhaozhi Qian 3 Nov 03, 2022
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
An efficient framework for reinforcement learning.

rl: An efficient framework for reinforcement learning Requirements Introduction PPO Test Requirements name version Python =3.7 numpy =1.19 torch =1

16 Nov 30, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
Deep and online learning with spiking neural networks in Python

Introduction The brain is the perfect place to look for inspiration to develop more efficient neural networks. One of the main differences with modern

Jason Eshraghian 447 Jan 03, 2023