Implementation of TimeSformer, a pure attention-based solution for video classification

Overview

TimeSformer - Pytorch

Implementation of TimeSformer, a pure and simple attention-based solution for reaching SOTA on video classification. This repository will only house the best performing variant, 'Divided Space-Time Attention', which is nothing more than attention along the time axis before the spatial.

Install

$ pip install timesformer-pytorch

Usage

import torch
from timesformer_pytorch import TimeSformer

model = TimeSformer(
    dim = 512,
    image_size = 224,
    patch_size = 16,
    num_frames = 8,
    num_classes = 10,
    depth = 12,
    heads = 8,
    dim_head =  64,
    attn_dropout = 0.1,
    ff_dropout = 0.1
)

video = torch.randn(2, 8, 3, 224, 224) # (batch x frames x channels x height x width)
pred = model(video) # (2, 10)

Citations

@misc{bertasius2021spacetime,
    title   = {Is Space-Time Attention All You Need for Video Understanding?}, 
    author  = {Gedas Bertasius and Heng Wang and Lorenzo Torresani},
    year    = {2021},
    eprint  = {2102.05095},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Comments
  • How to deal with varying length video? Thanks

    How to deal with varying length video? Thanks

    Dear all, I am wondering if TimeSformer can handle different videos with diverse lengths? Is it possible to use mask as the original Transformer? Any ideas, thanks a lot.

    opened by junyongyou 2
  • fix runtime error in SpaceTime Attention

    fix runtime error in SpaceTime Attention

    There is a shape mismatch error in Attention. When we splice out the classification token from the first token of each sequence in q, k and v, the shape becomes (batch_size * num_heads, num_frames * num_patches - 1, head_dim). Then we try to reshape the tensor by taking out a factor of num_frames or num_patches (depending on whether it is space or time attention) from dimension 1. That doesn't work because we subtracted out the classification token.

    I found that performing the rearrange operation before splicing the token fixes the issue.

    I recreate the problem and illustrate the solution in this notebook: https://colab.research.google.com/drive/1lHFcn_vgSDJNSqxHy7rtqhMVxe0nUCMS?usp=sharing.

    By the way, thank you to @lucidrains; all of your implementations on attention-based models are helping me more than you know.

    opened by adam-mehdi 1
  • Update timesformer_pytorch.py

    Update timesformer_pytorch.py

    fixing issue for scaling

    File "/home/aarti9/.local/lib/python3.6/site-packages/timesformer_pytorch/timesformer_pytorch.py", line 82, in forward q *= self.scale

    RuntimeError: Output 0 of ViewBackward is a view and is being modified inplace. This view is an output of a function that returns multiple views. Inplace operators on such views is forbidden. You should replace the inplace operation by an out-of-place one.

    opened by aarti9 0
  • Fine-tune with new datasets

    Fine-tune with new datasets

    Thank you so much for your great effort. I can predict the images using the given .py files. But, I couldn't find train.py files, so how to fine-tune the network with new datasets? where should i define the image samples of the new dataset ?

    opened by Jeba-create 0
  • problem in timesformer_pytorch.py

    problem in timesformer_pytorch.py

    start from line 182 video = rearrange(video, 'b f c (h p1) (w p2) -> b (f h w) (p1 p2 c)', p1 = p, p2 = p) i think this should be video = rearrange(video, 'b f c (hp p1) (wp p2) -> b (f hp wp) (p1 p2 c)', p1 = p, p2 = p)

    opened by Weizhongjin 2
  • Imagenet Pretrained Weights

    Imagenet Pretrained Weights

    Thanks for the work! In their paper they say For all our experiments, we adopt the “Base” ViT model architecture (Dosovitskiy et al., 2020) pretrained on ImageNet.

    I know that you said the official weights trained on kinetics and such are not officially released yet. However, I am not interested in those but am actually in need of the initial weights of the network just based on ViT Imagenet pretraining. I need to train this implementation of yours starting from those. From what it looks like, you don't have weights for this implementation that come from imagenet pretraining, do you?

    opened by RaivoKoot 5
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)

Improving-Adversarial-Transferability-of-Vision-Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli arxiv link A

Muzammal Naseer 47 Dec 02, 2022
Luminaire is a python package that provides ML driven solutions for monitoring time series data.

A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig

Zillow 670 Jan 02, 2023
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Khoi Nguyen 8 Dec 11, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

One Thing One Click One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021) Code for the paper One Thi

44 Dec 12, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
TyXe: Pyro-based BNNs for Pytorch users

TyXe: Pyro-based BNNs for Pytorch users TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveragi

87 Jan 03, 2023
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE)

OG-SPACE Introduction Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE) is a computational framewo

Data and Computational Biology Group UNIMIB (was BI*oinformatics MI*lan B*icocca) 0 Nov 17, 2021
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
Official PyTorch repo for JoJoGAN: One Shot Face Stylization

JoJoGAN: One Shot Face Stylization This is the PyTorch implementation of JoJoGAN: One Shot Face Stylization. Abstract: While there have been recent ad

1.3k Dec 29, 2022
Very Deep Convolutional Networks for Large-Scale Image Recognition

pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo

Justin Johnson 217 Dec 05, 2022
Bot developed in Python that automates races in pegaxy.

español | português About it: This is a fork from pega-racing-bot. This bot, developed in Python, is to automate races in pegaxy. The game developers

4 Apr 08, 2022
Synthetic Scene Text from 3D Engines

Introduction UnrealText is a project that synthesizes scene text images using 3D graphics engine. This repository accompanies our paper: UnrealText: S

Shangbang Long 215 Dec 29, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023