Implementation of a Transformer, but completely in Triton

Overview

Transformer in Triton (wip)

Implementation of a Transformer, but completely in Triton. I'm completely new to lower-level neural net code, so this repository will mostly be a learning experience, with the end-goal being a vanilla transformer that is faster and more efficient to train.

Install

$ pip install triton-transformer

Usage

import torch
from triton_transformer import Transformer

model = Transformer(
    num_tokens = 256,
    max_seq_len = 1024,
    dim = 512,
    depth = 6,
    heads = 8,
    dim_head = 64
)

x = torch.randint(0, 256, (1, 1024))
mask = torch.ones(1, 1024).bool()

logits = model(x, mask = mask) # (1, 1024, 256)

Citations

@article{Tillet2019TritonAI,
    title   = {Triton: an intermediate language and compiler for tiled neural network computations},
    author  = {Philippe Tillet and H. Kung and D. Cox},
    journal = {Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages},
    year    = {2019}
}
@misc{vaswani2017attention,
    title   = {Attention Is All You Need}, 
    author  = {Ashish Vaswani and Noam Shazeer and Niki Parmar and Jakob Uszkoreit and Llion Jones and Aidan N. Gomez and Lukasz Kaiser and Illia Polosukhin},
    year    = {2017},
    eprint  = {1706.03762},
    archivePrefix = {arXiv},
    primaryClass = {cs.CL}
}
You might also like...
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

A concise but complete implementation of CLIP with various experimental improvements from recent papers
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

A concise but complete implementation of CLIP with various experimental improvements from recent papers
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)
Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)

Protein GLM (wip) Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capabil

Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

Episodic Transformer (E.T.) is a novel attention-based architecture for vision-and-language navigation. E.T. is based on a multimodal transformer that encodes language inputs and the full episode history of visual observations and actions. CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

Comments
  • Question concerning PyTorch build

    Question concerning PyTorch build

    Hello. I find your project very interesting and I have seen your comparison between PyTorch and Triton implementations.

    However, I am curious whether your PyTorch environment is a source build optimized for your machine or a pip/conda install.

    Source building has faster runtimes and if a conda install is being used for comparison, the difference in speed may simply be due to Triton optimizing CUDA for the run environment.

    Thank you again for your interesting project.

    opened by veritas9872 13
  • _layernorm implementation forward result not equal F.layer_norm

    _layernorm implementation forward result not equal F.layer_norm

    I have a try on your triton-transformer and test the layernorm module alone. It's very weird that the forward result is different while the backward result is equal.

    code: from triton_transformer.layernorm import layernorm import torch import torch.nn as nn

    torch.manual_seed(0) x = torch.randn(2,5).cuda() x.requires_grad_(True) dy = .1*torch.randn_like(x).cuda() dim = 5 norm = nn.LayerNorm(dim).cuda()

    y1 = layernorm(x, norm.weight, norm.bias, use_triton = True) y2 = layernorm(x, norm.weight, norm.bias, use_triton = False) print(y1, y2) print(torch.allclose(y1, y2))

    y1.backward(dy, retain_graph=True) dx_y1 = x.grad.clone()

    x.grad = None

    y2.backward(dy, retain_graph=True) dx_y2 = x.grad.clone() print(dx_y1, dx_y2) print(torch.allclose(dx_y1, dx_y2))

    result: `tensor([[ 0.9492, -0.0021, -0.9797, 0.4449, -0.4123], [-0.7624, 0.4399, 0.7299, -0.3091, -0.0983]], device='cuda:0', grad_fn=<_layernormBackward>) tensor([[ 1.4217, -0.0031, -1.4674, 0.6663, -0.6175], [-1.4342, 0.8276, 1.3732, -0.5815, -0.1850]], device='cuda:0', grad_fn=) False

    tensor([[-0.0706, 0.0288, -0.0813, 0.0446, 0.0785], [ 0.0218, -0.0152, 0.0141, -0.0522, 0.0315]], device='cuda:0') tensor([[-0.0706, 0.0288, -0.0813, 0.0446, 0.0785], [ 0.0218, -0.0152, 0.0141, -0.0522, 0.0315]], device='cuda:0') True`

    opened by Tengxu-Sun 1
  • Current state of benchmarking & contributing?

    Current state of benchmarking & contributing?

    Hey @lucidrains - hope you're doing well! I have some time to hack the next couple weeks, just wanted to get a sense of:

    • Current state of benchmarking (what Triton kernels provide how much lift, aggregate lift over a "vanilla Transformer implementation"
    • If there's anything I could help with, especially as I learn Triton!
    opened by siddk 0
  • Official layer norm added

    Official layer norm added

    Hi @lucidrains , in Triton layer norm was just added in examples, https://github.com/openai/triton/commit/d4baad426db72b83c5222e1c83c929c1860cae54 I tested it, it's twice as fast as Torch, often faster then Apex.

    I'm looking forward for your implementation of attention, so far the Torch implementation is the fastest with 12.3 / 14.5 (forw / back) vs the other Triton implementation in DeepSpeed which is 17.3/ 23.0 on my data.

    opened by olegklimov 2
Releases(0.1.1)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
AI-Bot - 一个基于watermelon改造的OpenAI-GPT-2的智能机器人

AI-Bot 一个基于watermelon改造的OpenAI-GPT-2的智能机器人 在Binder上直接运行测试 目前有两种实现方式 TF2的GPT-2 TF

9 Nov 16, 2022
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023
[ICCV 2021] Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation

ADDS-DepthNet This is the official implementation of the paper Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation I

LIU_LINA 52 Nov 24, 2022
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
This repository contains implementations and illustrative code to accompany DeepMind publications

DeepMind Research This repository contains implementations and illustrative code to accompany DeepMind publications. Along with publishing papers to a

DeepMind 11.3k Dec 31, 2022
PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

22 Jan 04, 2023
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing"

ProxyFL Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing" Authors: Shivam Kalra*, Junfeng Wen*, Jess

Layer6 Labs 14 Dec 06, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022
This code provides various models combining dilated convolutions with residual networks

Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less

Fisher Yu 1.1k Dec 30, 2022
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
Blender Add-On for slicing meshes with planes

MeshSlicer Blender Add-On for slicing meshes with multiple overlapping planes at once. This is a simple Blender addon to slice a silmple mesh with mul

52 Dec 12, 2022
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 123 Dec 23, 2022