MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

Overview

MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

This repository contains links to data and code to fetch and reproduce the data described in our EMNLP 2021 paper titled "MassiveSumm: a very large-scale, very multilingual, news summarisation dataset". A (massive) multilingual dataset consisting of 92 diverse languages, across 35 writing scripts. With this work we attempt to take the first steps towards providing a diverse data foundation for in summarisation in many languages.

Disclaimer: The data is noisy and recall-oriented. In fact, we highly recommend reading our analysis on the efficacy of this type of methods for data collection.

Get the Data

Redistributing data from web is a tricky matter. We are working on providing efficient access to the entire dataset, as well as expanding it even further. For the time being we only provide links to reproduce subsets of the entire dataset through either common crawl and the wayback machine. The dataset is also available upon request ([email protected]).

In the table below is a listing of files containing URLs and metadata required to fetch data from common crawl.

lang wayback cc
afr link -
amh link link
ara link link
asm link -
aym link -
aze link link
bam link link
ben link link
bod link link
bos link link
bul link link
cat link -
ces link link
cym link link
dan link link
deu link link
ell link link
eng link link
epo link -
fas link link
fil link -
fra link link
ful link link
gle link link
guj link link
hat link link
hau link link
heb link -
hin link link
hrv link -
hun link link
hye link link
ibo link link
ind link link
isl link link
ita link link
jpn link link
kan link link
kat link link
khm link link
kin link -
kir link link
kor link link
kur link link
lao link link
lav link link
lin link link
lit link link
mal link link
mar link link
mkd link link
mlg link link
mon link link
mya link link
nde link link
nep link link
nld link -
ori link link
orm link link
pan link link
pol link link
por link link
prs link link
pus link link
ron link -
run link link
rus link link
sin link link
slk link link
slv link link
sna link link
som link link
spa link link
sqi link link
srp link link
swa link link
swe link -
tam link link
tel link link
tet link -
tgk link -
tha link link
tir link link
tur link link
ukr link link
urd link link
uzb link link
vie link link
xho link link
yor link link
yue link link
zho link link
bis - link
gla - link

Cite Us!

Please cite us if you use our data or methodology

@inproceedings{varab-schluter-2021-massivesumm,
    title = "{M}assive{S}umm: a very large-scale, very multilingual, news summarisation dataset",
    author = "Varab, Daniel  and
      Schluter, Natalie",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.797",
    pages = "10150--10161",
    abstract = "Current research in automatic summarisation is unapologetically anglo-centered{--}a persistent state-of-affairs, which also predates neural net approaches. High-quality automatic summarisation datasets are notoriously expensive to create, posing a challenge for any language. However, with digitalisation, archiving, and social media advertising of newswire articles, recent work has shown how, with careful methodology application, large-scale datasets can now be simply gathered instead of written. In this paper, we present a large-scale multilingual summarisation dataset containing articles in 92 languages, spread across 28.8 million articles, in more than 35 writing scripts. This is both the largest, most inclusive, existing automatic summarisation dataset, as well as one of the largest, most inclusive, ever published datasets for any NLP task. We present the first investigation on the efficacy of resource building from news platforms in the low-resource language setting. Finally, we provide some first insight on how low-resource language settings impact state-of-the-art automatic summarisation system performance.",
}
Owner
Daniel Varab
🐦: @danielvarab
Daniel Varab
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Matthias Wright 169 Dec 26, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
This repository implements WGAN_GP.

Image_WGAN_GP This repository implements WGAN_GP. Image_WGAN_GP This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you ca

Lieon 6 Dec 10, 2021
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators This is our Pytorch implementation for t

RUCAIBox 12 Jul 22, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
Yoga - Yoga asana classifier for python

Yoga Asana Classifier Description Hi welcome to my new deep learning project "Yo

Programminghut 35 Dec 12, 2022
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

DeepDeform (CVPR'2020) DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow imag

Aljaz Bozic 165 Jan 09, 2023
SCAN: Learning to Classify Images without Labels, incl. SimCLR. [ECCV 2020]

Learning to Classify Images without Labels This repo contains the Pytorch implementation of our paper: SCAN: Learning to Classify Images without Label

Wouter Van Gansbeke 1.1k Dec 30, 2022
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
Unsupervised Image to Image Translation with Generative Adversarial Networks

Unsupervised Image to Image Translation with Generative Adversarial Networks Paper: Unsupervised Image to Image Translation with Generative Adversaria

Hao 71 Oct 30, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
A containerized REST API around OpenAI's CLIP model.

OpenAI's CLIP — REST API This is a container wrapping OpenAI's CLIP model in a RESTful interface. Running the container locally First, build the conta

Santiago Valdarrama 48 Nov 06, 2022
Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

wangtianwei 61 Nov 12, 2022