A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

Overview

SVHNClassifier-PyTorch

A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

If you're interested in C++ inference, move HERE

Results

Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Accuracy
54000 GTX 1080 Ti 512 0.16 100 625 0.9 ~1700 95.65%

Sample

$ python infer.py -c=./logs/model-54000.pth ./images/test-75.png
length: 2
digits: 7 5 10 10 10

$ python infer.py -c=./logs/model-54000.pth ./images/test-190.png
length: 3
digits: 1 9 0 10 10

Loss

Requirements

  • Python 3.6

  • torch 1.0

  • torchvision 0.2.1

  • visdom

    $ pip install visdom
    
  • h5py

    In Ubuntu:
    $ sudo apt-get install libhdf5-dev
    $ sudo pip install h5py
    
  • protobuf

    $ pip install protobuf
    
  • lmdb

    $ pip install lmdb
    

Setup

  1. Clone the source code

    $ git clone https://github.com/potterhsu/SVHNClassifier-PyTorch
    $ cd SVHNClassifier-PyTorch
    
  2. Download SVHN Dataset format 1

  3. Extract to data folder, now your folder structure should be like below:

    SVHNClassifier
        - data
            - extra
                - 1.png 
                - 2.png
                - ...
                - digitStruct.mat
            - test
                - 1.png 
                - 2.png
                - ...
                - digitStruct.mat
            - train
                - 1.png 
                - 2.png
                - ...
                - digitStruct.mat
    

Usage

  1. (Optional) Take a glance at original images with bounding boxes

    Open `draw_bbox.ipynb` in Jupyter
    
  2. Convert to LMDB format

    $ python convert_to_lmdb.py --data_dir ./data
    
  3. (Optional) Test for reading LMDBs

    Open `read_lmdb_sample.ipynb` in Jupyter
    
  4. Train

    $ python train.py --data_dir ./data --logdir ./logs
    
  5. Retrain if you need

    $ python train.py --data_dir ./data --logdir ./logs_retrain --restore_checkpoint ./logs/model-100.pth
    
  6. Evaluate

    $ python eval.py --data_dir ./data ./logs/model-100.pth
    
  7. Visualize

    $ python -m visdom.server
    $ python visualize.py --logdir ./logs
    
  8. Infer

    $ python infer.py --checkpoint=./logs/model-100.pth ./images/test1.png
    
  9. Clean

    $ rm -rf ./logs
    or
    $ rm -rf ./logs_retrain
    
Owner
Potter Hsu
Potter Hsu
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022
A texturizer that I just made. Nothing special here.

texturizer This is a little project that I did with an hour's time. It texturizes an image given a image and a texture to texturize it with. There is

1 Nov 11, 2021
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022
Tensorflow/Keras Plug-N-Play Deep Learning Models Compilation

DeepBay This project was created with the objective of compile Machine Learning Architectures created using Tensorflow or Keras. The architectures mus

Whitman Bohorquez 4 Sep 26, 2022
Low Complexity Channel estimation with Neural Network Solutions

Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con

Dianxin 10 Dec 10, 2022
Addition of pseudotorsion caclulation eta, theta, eta', and theta' to barnaba package

Addition to Original Barnaba Code: This is modified version of Barnaba package to calculate RNA pseudotorsion angles eta, theta, eta', and theta'. Ple

Mandar Kulkarni 1 Jan 11, 2022
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Isen (Songyao Jiang) 128 Dec 08, 2022
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

4 Feb 24, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Randstad Artificial Intelligence Challenge (powered by VGEN) Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato Struttura director

Stefano Fiorucci 1 Nov 13, 2021
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of images as "pixels"

picinpics Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of

RodrigoCMoraes 1 Oct 24, 2021