Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

Overview

CenterPose

Overview

This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image" by Lin et al. (full citation below). In this work, we propose a single-stage, keypoint-based approach for category-level object pose estimation, which operates on unknown object instances within a known category using a single RGB image input. The proposed network performs 2D object detection, detects 2D keypoints, estimates 6-DoF pose, and regresses relative 3D bounding cuboid dimensions. These quantities are estimated in a sequential fashion, leveraging the recent idea of convGRU for propagating information from easier tasks to those that are more difficult. We favor simplicity in our design choices: generic cuboid vertex coordinates, a single-stage network, and monocular RGB input. We conduct extensive experiments on the challenging Objectron benchmark of real images, outperforming state-of-the-art methods for 3D IoU metric (27.6% higher than the single-stage approach of MobilePose and 7.1% higher than the related two-stage approach). The algorithm runs at 15 fps on an NVIDIA GTX 1080Ti GPU.

Installation

The code was tested on Ubuntu 16.04, with Anaconda Python 3.6 and PyTorch 1.1.0. Higher versions should be possible with some accuracy difference. NVIDIA GPUs are needed for both training and testing.

  1. Clone this repo:

    CenterPose_ROOT=/path/to/clone/CenterPose
    git clone https://github.com/NVlabs/CenterPose.git $CenterPose_ROOT
    
  2. Create an Anaconda environment or create your own virtual environment

    conda create -n CenterPose python=3.6
    conda activate CenterPose
    pip install -r requirements.txt
    conda install -c conda-forge eigenpy
    
  3. Compile the deformable convolutional layer

    git submodule init
    git submodule update
    cd $CenterPose_ROOT/src/lib/models/networks/DCNv2
    ./make.sh
    

    [Optional] If you want to use a higher version of PyTorch, you need to download the latest version of DCNv2 and compile the library.

    git submodule set-url https://github.com/jinfagang/DCNv2_latest.git src/lib/models/networks/DCNv2
    git submodule sync
    git submodule update --init --recursive --remote
    cd $CenterPose_ROOT/src/lib/models/networks/DCNv2
    ./make.sh
    
  4. Download our pre-trained models for CenterPose and move all the .pth files to $CenterPose_ROOT/models/CenterPose/. We currently provide models for 9 categories: bike, book, bottle, camera, cereal_box, chair, cup, laptop, and shoe.

  5. Prepare training/testing data

    We save all the training/testing data under $CenterPose_ROOT/data/.

    For the Objectron dataset, we created our own data pre-processor to extract the data for training/testing. Refer to the data directory for more details.

Demo

We provide supporting demos for image, videos, webcam, and image folders. See $CenterPose_ROOT/images/CenterPose

For category-level 6-DoF object estimation on images/video/image folders, run:

cd $CenterPose_ROOT/src
python demo.py --demo /path/to/image/or/folder/or/video --arch dlav1_34 --load_model ../path/to/model

You can also enable --debug 4 to save all the intermediate and final outputs.

For the webcam demo (You may want to specify the camera intrinsics via --cam_intrinsic), run

cd $CenterPose_ROOT/src
python demo.py --demo webcam --arch dlav1_34 --load_model ../path/to/model

Training

We follow the approach of CenterNet for training the DLA network, reducing the learning rate by 10x after epoch 90 and 120, and stopping after 140 epochs.

For debug purposes, you can put all the local training params in the $CenterPose_ROOT/src/main_CenterPose.py script. You can also use the command line instead. More options are in $CenterPose_ROOT/src/lib/opts.py.

To start a new training job, simply do the following, which will use default parameter settings:

cd $CenterPose_ROOT/src
python main_CenterPose.py

The result will be saved in $CenterPose_ROOT/exp/object_pose/$dataset_$category_$arch_$time ,e.g., objectron_bike_dlav1_34_2021-02-27-15-33

You could then use tensorboard to visualize the training process via

cd $path/to/folder
tensorboard --logdir=logs --host=XX.XX.XX.XX

Evaluation

We evaluate our method on the Objectron dataset, please refer to the objectron_eval directory for more details.

Citation

Please cite grasp_primitiveShape if you use this repository in your publications:

@article{lin2021single,
  title={Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image},
  author={Lin, Yunzhi and Tremblay, Jonathan and Tyree, Stephen and Vela, Patricio A and Birchfield, Stan},
  journal={arXiv preprint arXiv:2109.06161},
  year={2021}
}

Licence

CenterPose is licensed under the NVIDIA Source Code License - Non-commercial.

Owner
NVIDIA Research Projects
NVIDIA Research Projects
一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

AgentMaker 98 Nov 10, 2022
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
🔅 Shapash makes Machine Learning models transparent and understandable by everyone

🎉 What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y

MAIF 2.1k Dec 27, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

Double-zh 45 Dec 19, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022
Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation [AAAI 2021] DropLoss for Long-Tail Instance Segmentation Ting-I Hsieh*, Esther Robb*, Hwann-Tz

Tim 37 Dec 02, 2022
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S

Rodrigo Veiga 3 Nov 24, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
A research toolkit for particle swarm optimization in Python

PySwarms is an extensible research toolkit for particle swarm optimization (PSO) in Python. It is intended for swarm intelligence researchers, practit

Lj Miranda 1k Dec 30, 2022
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
Algorithms for outlier, adversarial and drift detection

Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d

Seldon 1.6k Dec 31, 2022
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
General purpose Slater-Koster tight-binding code for electronic structure calculations

tight-binder Introduction General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code

9 Dec 15, 2022
Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Andy_Ge 62 Dec 21, 2022
Autoregressive Models in PyTorch.

Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto

Christoph Heindl 41 Oct 09, 2022