Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Overview

Dangers of Bayesian Model Averaging under Covariate Shift

This repository contains the code to reproduce the experiments in the paper Dangers of Bayesian Model Averaging under Covariate Shift by Pavel Izmailov, Patrick Nicholson, Sanae Lotfi and Andrew Gordon Wilson.

The code is forked from the Google Research BNN HMC repo.

Introduction

Approximate Bayesian inference for neural networks is considered a robust alternative to standard training, often providing good performance on out-of-distribution data. However, it was recently shown that Bayesian neural networks (BNNs) with high fidelity inference through Hamiltonian Monte Carlo (HMC) provide shockingly poor performance under covariate shift. For example, below we show that a ResNet-20 BNN approximated with HMC underperforms a maximum a-posteriori (MAP) solution by 25% on the pixelate-corrupted CIFAR-10 test set. This result is particularly surprising given that on the in-distribution test data, the BNN outperforms the MAP solution by over 5%. In this work, we seek to understand, further demonstrate, and help remedy this concerning behaviour.

As an example, let us consider a fully-connected network on MNIST. MNIST contains many dead pixels, i.e. pixels near the boundary that are zero for all training images. The corresponding weights in the first layer of the network are always multiplied by zero, and have no effect on the likelihood of the training data. Consequently, in a Bayesian neural network, these weights will be sampled from the prior. A MAP solution on the other hand will set these parameters close to zero. In the animation, we visualize the weights in the first layer of a Bayesian neural network and a MAP solution. For each sample, we show the value of the weight corresponding to the highlighted pixel.

If at test time the data is corrupted, e.g. by Gaussian noise, and the pixels near the boundary of the image are activated, the MAP solution will ignore these pixels, while the predictions of the BNN will be significantly affected.

In the paper, we extend this reasoning to general linear dependencies between input features for both fully connected and convolutional Bayesian neural networks. We also propose EmpCov, a prior based on the empirical covariance of the data which significantly improves robustness of BNNs to covariate shift. We implement EmpCov as well as other priors for Bayesian neural networks in this repo.

Requirements

We use provide a requirements.txt file that can be used to create a conda environment to run the code in this repo:

conda create --name <env> --file requirements.txt

Example set-up using pip:

pip install tensorflow

pip install --upgrade pip
pip install --upgrade jax jaxlib==0.1.65+cuda112 -f \
https://storage.googleapis.com/jax-releases/jax_releases.html

pip install git+https://github.com/deepmind/dm-haiku
pip install tensorflow_datasets
pip install tabulate
pip install optax

Please see the JAX repo for the latest instructions on how to install JAX on your hardware.

File Structure

The implementations of HMC and other methods forked from the BNN HMC repo are in the bnn_hmc folder. The main training scripts are run_hmc.py for HMC and run_sgd.py for SGD respectively. In the notebooks folder we show examples of how to extract the covariance matrices for EmpCov priors, and evaluate the results under various corruptions.

.
+-- bnn_hmc/
|   +-- core/
|   |   +-- hmc.py (The Hamiltonian Monte Carlo algorithm)
|   |   +-- sgmcmc.py (SGMCMC methods as optax optimizers)
|   |   +-- vi.py (Mean field variational inference)
|   +-- utils/ (Utility functions used by the training scripts)
|   |   +-- train_utils.py (The training epochs and update rules)
|   |   +-- models.py (Models used in the experiments)
|   |   +-- losses.py (Prior and likelihood functions)
|   |   +-- data_utils.py (Loading and pre-processing the data)
|   |   +-- optim_utils.py (Optimizers and learning rate schedules)
|   |   +-- ensemble_utils.py (Implementation of ensembling of predictions)
|   |   +-- metrics.py (Metrics used in evaluation)
|   |   +-- cmd_args_utils.py (Common command line arguments)
|   |   +-- script_utils.py (Common functionality of the training scripts)
|   |   +-- checkpoint_utils.py (Saving and loading checkpoints)
|   |   +-- logging_utils.py (Utilities for logging printing the results)
|   |   +-- precision_utils.py (Controlling the numerical precision)
|   |   +-- tree_utils.py (Common operations on pytree objects)
+-- notebooks/  
|   +-- cnn_robustness_cifar10.ipynb (Creates CIFAR-10 CNN figures used in paper)  
|   +-- mlp_robustness_mnist.ipynb (Creates MNIST MLP figures used in paper)
|   +-- cifar10_cnn_extract_empcov.ipynb (Constructs EmpCov prior covariance matrix for CIFAR-10 CNN)
|   +-- mnist_extract_empcov.ipynb (Constructs EmpCov prior covariance matrices for CIFAR-10 CNN and MLP)
+-- empcov_covs/
|   +-- cifar_cnn_pca_inv_cov.npy (EmpCov inverse prior covariance for CIFAR-10 CNN)
|   +-- mnist_cnn_pca_inv_cov.npy (EmpCov inverse prior covariance for MNIST CNN)
|   +-- mnist_mlp_pca_inv_cov.npy (EmpCov inverse prior covariance for MNIST MLP)
+-- run_hmc.py (HMC training script)
+-- run_sgd.py (SGD training script)

Training Scripts

The training scripts are adapted from the Google Research BNN HMC repo. For completeness, we provide full details about the command line arguments here.

Common command line arguments:

  • seed — random seed
  • dir — training directory for saving the checkpoints and tensorboard logs
  • dataset_name — name of the dataset, e.g. cifar10, cifar100, mnist
  • subset_train_to — number of datapoints to use from the dataset; by default, the full dataset is used
  • model_name — name of the neural network architecture, e.g. lenet, resnet20_frn_swish, cnn_lstm, mlp_regression_small
  • weight_decay — weight decay; for Bayesian methods, weight decay determines the prior variance (prior_var = 1 / weight_decay)
  • temperature — posterior temperature (default: 1)
  • init_checkpoint — path to the checkpoint to use for initialization (optional)
  • tabulate_freq — frequency of tabulate table header logging
  • use_float64 — use float64 precision (does not work on TPUs and some GPUs); by default, we use float32 precision
  • prior_family — type of prior to use; must be one of Gaussian, ExpFNormP, Laplace, StudentT, SumFilterLeNet, EmpCovLeNet or EmpCovMLP; see the next section for more details

Prior Families

In this repo we implement several prior distribution families. Some of the prior families have additional command line arguments specifying the parameters of the prior:

  • Gaussian — iid Gaussian prior centered at 0 with variance equal to 1 / weight_decay
  • Laplace — iid Laplace prior centered at 0 with variance equal to 1 / weight_decay
  • StudentT — iid Laplace prior centered at 0 with studentt_degrees_of_freedom degrees of freedom and scaled by 1 / weight_decay
  • ExpFNormP — iid ExpNorm prior centered at 0 defined in the paper. expfnormp_power specifies the power under the exponent in the prior, and 1 / weight_decay defines the scale of the prior
  • EmpCovLeNet and EmpCovMLPEmpCov priors with the inverse of empirical covariance matrix of the data as a .npy array provided as empcov_invcov_ckpt; empcov_wd allows to rescale the covariance matrix for the first layer.
  • SumFilterLeNetSumFilter prior presented in the paper; 1 / sumfilterlenet_weight_decay determines the prior variance for the sum of the filter weights in the first layer

Some prior types require additional arguments, such as empcov_pca_wd and studentt_degrees_of_freedom; run scripts with --help for full details.

Running HMC

To run HMC, you can use the run_hmc.py training script. Arguments:

  • step_size — HMC step size
  • trajectory_len — HMC trajectory length
  • num_iterations — Total number of HMC iterations
  • max_num_leapfrog_steps — Maximum number of leapfrog steps allowed; meant as a sanity check and should be greater than trajectory_len / step_size
  • num_burn_in_iterations — Number of burn-in iterations (default: 0)

Examples

CNN on CIFAR-10 with different priors:

# Gaussian prior
python3 run_hmc.py --seed=0 --weight_decay=100 --temperature=1. \
  --dir=runs/hmc/cifar10/gaussian/ --dataset_name=cifar10 \
  --model_name=lenet --step_size=3.e-05 --trajectory_len=0.15 \
  --num_iterations=100 --max_num_leapfrog_steps=5300 \
  --num_burn_in_iterations=10

# Laplace prior
python3 run_hmc.py --seed=0 --weight_decay=100 --temperature=1. \
  --dir=runs/hmc/cifar10/laplace --dataset_name=cifar10 \
  --model_name=lenet --step_size=3.e-05 --trajectory_len=0.15 \
  --num_iterations=100 --max_num_leapfrog_steps=5300 \
  --num_burn_in_iterations=10 --prior_family=Laplace

# Gaussian prior, T=0.1
python3  run_hmc.py --seed=0 --weight_decay=3 --temperature=0.01 \
  --dir=runs/hmc/cifar10/lenet/temp --dataset_name=cifar10 \
  --model_name=lenet --step_size=1.e-05 --trajectory_len=0.1 \
  --num_iterations=100 --max_num_leapfrog_steps=10000 \
  --num_burn_in_iterations=10

# EmpCov prior
python3 run_hmc.py --seed=0 --weight_decay=100. --temperature=1. \
  --dir=runs/hmc/cifar10/EmpCov --dataset_name=cifar10 \
  --model_name=lenet --step_size=1.e-4 --trajectory_len=0.157 \ 
  --num_iterations=100 --max_num_leapfrog_steps=2000 \
  --num_burn_in_iterations=10 --prior_family=EmpCovLeNet \
  --empcov_invcov_ckpt=empcov_covs/cifar_cnn_pca_inv_cov.npy \
  --empcov_wd=100.

We ran these commands on a machine with 8 NVIDIA Tesla V-100 GPUs.

MLP on MNIST using different priors:

# Gaussian prior
python3 run_hmc.py --seed=2 --weight_decay=100  \
  --dir=runs/hmc/mnist/gaussian \
  --dataset_name=mnist --model_name=mlp_classification \
  --step_size=1.e-05 --trajectory_len=0.15 \
  --num_iterations=100 --max_num_leapfrog_steps=15500 \
  --num_burn_in_iterations=10

# Laplace prior
python3 run_hmc.py --seed=0 --weight_decay=3.0 \
  --dir=runs/hmc/mnist/laplace --dataset_name=mnist \
  --model_name=mlp_classification --step_size=6.e-05 \
  --trajectory_len=0.9 --num_iterations=100 \
  --max_num_leapfrog_steps=15500 \
  --num_burn_in_iterations=10 --prior_family=Laplace

# Student-T prior
python3 run_hmc.py --seed=0 --weight_decay=10. \
  --dir=runs/hmc/mnist/studentt --dataset_name=mnist \
  --model_name=mlp_classification --step_size=1.e-4 --trajectory_len=0.49 \ 
  --num_iterations=100 --max_num_leapfrog_steps=5000 \
  --num_burn_in_iterations=10 --prior_family=StudentT \
  --studentt_degrees_of_freedom=5.

# Gaussian prior, T=0.1
python3 run_hmc.py --seed=11 --weight_decay=100 \
  --temperature=0.01 --dir=runs/hmc/mnist/temp \
  --dataset_name=mnist --model_name=mlp_classification \
  --step_size=6.3e-07 --trajectory_len=0.015 \
  --num_iterations=100 --max_num_leapfrog_steps=25500 \
  --num_burn_in_iterations=10

# EmpCov prior
python3 run_hmc.py --seed=0 --weight_decay=100 \
  --dir=runs/hmc/mnist/empcov --dataset_name=mnist \
  --model_name=mlp_classification --step_size=1.e-05 \
  --trajectory_len=0.15 --num_iterations=100 \
  --max_num_leapfrog_steps=15500 \
  --num_burn_in_iterations=10 --prior_family=EmpCovMLP \
  --empcov_invcov_ckpt=empcov_covs/mnist_mlp_pca_inv_cov.npy \
  --empcov_wd=100  

This script can be ran on a single GPU or a TPU V3-8.

Running SGD

To run SGD, you can use the run_sgd.py training script. Arguments:

  • init_step_size — Initial SGD step size; we use a cosine schedule
  • num_epochs — total number of SGD epochs iterations
  • batch_size — batch size
  • eval_freq — frequency of evaluation (epochs)
  • save_freq — frequency of checkpointing (epochs)
  • momentum_decay — momentum decay parameter for SGD

Examples

MLP on MNIST:

python3 run_sgd.py --seed=0 --weight_decay=100 --dir=runs/sgd/mnist/ \
  --dataset_name=mnist --model_name=mlp_classification \
  --init_step_size=1e-7 --eval_freq=10 --batch_size=80 \
  --num_epochs=100 --save_freq=100

CNN on CIFAR-10:

python3 run_sgd.py --seed=0 --weight_decay=100. --dir=runs/sgd/cifar10/lenet \
  --dataset_name=cifar10 --model_name=lenet --init_step_size=1e-7 --batch_size=80 \
  --num_epochs=300 --save_freq=300

To train a deep ensemble, we simply train multiple copies of SGD with different random seeds.

Results

We consider the corrupted versions of the MNIST and CIFAR-10 datasets with both fully-connected (mlp_classification) and convolutional (lenet) architectures. Additionally, we consider domain shift problems from MNIST to SVHN and from CIFAR-10 to STL-10. We apply the EmpCov prior to the first layer of Bayesian neural networks (BNNs), and a Gaussian prior to all other layers using the commands in the examples. The following figure shows the results for: deep ensembles, maximum-a-posterior estimate obtained through SGD, BNNs with a Gaussian prior, and BNNs with our novel EmpCov prior. EmpCov prior improves the robustness of BNNs to covariate shift, leading to better results on most corruptions and a competitive performance with deep ensembles for both fully-connected and convolutional architectures.

combined_resolution png-1

Owner
Pavel Izmailov
Pavel Izmailov
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 09, 2023
SFD implement with pytorch

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector Description Meanwhile train hand

Jun Li 251 Dec 22, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
Task-related Saliency Network For Few-shot learning

Task-related Saliency Network For Few-shot learning This is an official implementation in Tensorflow of TRSN. Abstract An essential cue of human wisdo

1 Nov 18, 2021
Nested cross-validation is necessary to avoid biased model performance in embedded feature selection in high-dimensional data with tiny sample sizes

Pruner for nested cross-validation - Sphinx-Doc Nested cross-validation is necessary to avoid biased model performance in embedded feature selection i

1 Dec 15, 2021
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation

qiang chen 273 Jan 03, 2023
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFMS)

Primeira_Rede_Neural_Convolucional Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFM

Roney_Felipe 1 Jan 13, 2022
Vision-Language Pre-training for Image Captioning and Question Answering

VLP This repo hosts the source code for our AAAI2020 work Vision-Language Pre-training (VLP). We have released the pre-trained model on Conceptual Cap

Luowei Zhou 373 Jan 03, 2023
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
Capstone-Project-2 - A game program written in the Python language

Capstone-Project-2 My Pygame Game Information: Description This Pygame project i

Nhlakanipho Khulekani Hlophe 1 Jan 04, 2022
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022