Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Overview

Deep Adversarial Decomposition

PDF | Supp | 1min-DemoVideo

Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework for Separating Superimposed Images", in CVPR 2020.

In the computer vision field, many tasks can be considered as image layer mixture/separation problems. For example, when we take a picture on rainy days, the image obtained can be viewed as a mixture of two layers: a rain streak layer and a clean background layer. When we look through a transparent glass, we see a mixture of the scene beyond the glass and the scene reflected by the glass.

Separating individual image layers from a single mixed image has long been an important but challenging task. We propose a unified framework named “deep adversarial decomposition” for single superimposed image separation. Our method deals with both linear and non-linear mixtures under an adversarial training paradigm. Considering the layer separating ambiguity that given a single mixed input, there could be an infinite number of possible solutions, we introduce a “Separation-Critic” - a discriminative network which is trained to identify whether the output layers are well-separated and thus further improves the layer separation. We also introduce a “crossroad l1” loss function, which computes the distance between the unordered outputs and their references in a crossover manner so that the training can be well-instructed with pixel-wise supervision. Experimental results suggest that our method significantly outperforms other popular image separation frameworks. Without specific tuning, our method achieves the state of the art results on multiple computer vision tasks, including the image deraining, photo reflection removal, and image shadow removal.

teaser

In this repository, we implement the training and testing of our paper based on pytorch and provide several demo datasets that can be used for reproduce the results reported in our paper. With the code, you can also try on your own datasets by following the instructions below.

Our code is partially adapted from the project pytorch-CycleGAN-and-pix2pix.

Requirements

See Requirements.txt.

Setup

  1. Clone this repo:
git clone https://github.com/jiupinjia/Deep-adversarial-decomposition.git 
cd Deep-adversarial-decomposition
  1. Download our demo datasets from 1) Google Drive; or 2) BaiduYun (Key: m9x1), and unzip into the repo directory.
unzip datasets.zip

Please note that in each of our demo datasets, we only uploaded a very small part of the images, which are only used as an example to show how the structure of the file directory is organized. To reproduce the results reported in our paper, you need to download the full versions of these datasets. All datasets used in our experiments are publicly available. Please check out our paper for more details.

Task 1: Image decomposition

teaser

On Stanford-Dogs + VGG-Flowers

  • To train the model:
python train.py --dataset dogsflowers --net_G unet_128 --checkpoint_dir checkpoints --vis_dir val_out --max_num_epochs 200 --batch_size 2 --enable_d1d2 --enable_d3 --enable_synfake --output_auto_enhance
  • To test the model:
python eval_unmix.py --dataset dogsflowers --ckptdir checkpoints --in_size 128 --net_G unet_128 --save_output

On MNIST + MNIST

  • To train the model:
python train.py --dataset mnist --net_G unet_64 --checkpoint_dir checkpoints --vis_dir val_out --max_num_epochs 200 --batch_size 2 --enable_d1d2 --enable_d3 --enable_synfake --output_auto_enhance

Task 2: Image deraining

teaser

On Rain100H

  • To train the model:
python train.py --dataset rain100h --checkpoint_dir checkpoints --vis_dir val_out --max_num_epochs 200 --batch_size 2 --enable_d1d2 --enable_d3 --enable_synfake --net_G unet_512 --pixel_loss pixel_loss --metric psnr_gt1
  • To test the model:
python eval_derain.py --dataset rain100h --ckptdir checkpoints --net_G unet_512 --in_size 512 --save_output

On Rain800

  • To train the model:
python train.py --dataset rain800 --checkpoint_dir checkpoints --vis_dir val_out --max_num_epochs 200 --batch_size 2 --enable_d1d2 --enable_d3 --enable_synfake --net_G unet_512 --pixel_loss pixel_loss --metric psnr_gt1
  • To test the model:
python eval_derain.py --dataset rain800 --ckptdir checkpoints --net_G unet_512 --in_size 512 --save_output

On DID-MDN

  • To train the model:
python train.py --dataset did-mdn --checkpoint_dir checkpoints --vis_dir val_out --max_num_epochs 200 --batch_size 2 --enable_d1d2 --enable_d3 --enable_synfake --net_G unet_512 --pixel_loss pixel_loss --metric psnr_gt1
python eval_derain.py --dataset did-mdn-test1 --ckptdir checkpoints --net_G unet_512 --save_output
  • To test the model on DDN-1k:
python eval_derain.py --dataset did-mdn-test2 --ckptdir checkpoints --net_G unet_512 --in_size 512 --save_output

Task 3: Image reflection removal

teaser

On Synthesis-Reflection

  • To train the model (together on all three subsets [defocused, focused, ghosting]):
python train.py --dataset syn3-all --checkpoint_dir checkpoints --vis_dir val_out --max_num_epochs 200 --batch_size 2 --enable_d1d2 --enable_d3 --enable_synfake --net_G unet_512 --pixel_loss pixel_loss --metric psnr_gt1
  • To test the model:
python eval_dereflection.py --dataset syn3-all --ckptdir checkpoints --net_G unet_512 --in_size 512 --save_output

You can also train and test separately on the three subsets of Synthesis-Reflection by specifying --dataset above to syn3-defocused, syn3-focused, or syn3-ghosting.

On BDN

  • To train the model:
python train.py --dataset bdn --checkpoint_dir checkpoints --vis_dir val_out --max_num_epochs 200 --batch_size 2 --enable_d1d2 --enable_d3 --enable_synfake --net_G unet_256 --pixel_loss pixel_loss --metric psnr_gt1
  • To test the model:
python eval_dereflection.py --dataset bdn --ckptdir checkpoints --net_G unet_256 --in_size 256 --save_output

On Zhang's dataset

  • To train the model:
python train.py --dataset xzhang --checkpoint_dir checkpoints --vis_dir val_out --max_num_epochs 200 --batch_size 2 --enable_d1d2 --enable_d3 --enable_synfake --net_G unet_512 --pixel_loss pixel_loss --metric psnr_gt1
  • To test the model:
python eval_dereflection.py --dataset xzhang --ckptdir checkpoints --net_G unet_512 --in_size 512 --save_output

Task 4: Shadow Removal

teaser

On ISTD

  • To train the model:
python train.py --dataset istd --checkpoint_dir checkpoints --vis_dir val_out --max_num_epochs 200 --batch_size 2 --enable_d1d2 --enable_d3 --enable_synfake --net_G unet_256 --pixel_loss pixel_loss --metric labrmse_gt1
  • To test the model:
python eval_deshadow.py --dataset istd --ckptdir checkpoints --net_G unet_256 --in_size 256 --save_output

On SRD

  • To train the model:
python train.py --dataset srd --checkpoint_dir checkpoints --vis_dir val_out --max_num_epochs 200 --batch_size 2 --enable_d1d2 --enable_d3 --enable_synfake --net_G unet_512 --pixel_loss pixel_loss --metric labrmse_gt1
  • To test the model:
python eval_deshadow.py --dataset srd --ckptdir checkpoints --net_G unet_512 --in_size 512 --save_output

Pretrained Models

The pre-trained models of the above examples can be found in the following link: https://drive.google.com/drive/folders/1Tv4-woRBZOVUInFLs0-S_cV2u-OjbhQ-?usp=sharing

Citation

If you use this code for your research, please cite our paper:

@inproceedings{zou2020deep,
  title={Deep Adversarial Decomposition: A Unified Framework for Separating Superimposed Images},
  author={Zou, Zhengxia and Lei, Sen and Shi, Tianyang and Shi, Zhenwei and Ye, Jieping},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={12806--12816},
  year={2020}
}
Owner
Zhengxia Zou
Postdoc at the University of Michigan. Research interest: computer vision and applications in remote sensing, self-driving, and video games.
Zhengxia Zou
Measure WWjj polarization fraction

WlWl Polarization Measure WWjj polarization fraction Paper: arXiv:2109.09924 Notice: This code can only be used for the inference process, if you want

4 Apr 10, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 05, 2023
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
Collections for the lasted paper about multi-view clustering methods (papers, codes)

Multi-View Clustering Papers Collections for the lasted paper about multi-view clustering methods (papers, codes). There also exists some repositories

Andrew Guan 10 Sep 20, 2022
An intuitive library to extract features from time series

Time Series Feature Extraction Library Intuitive time series feature extraction This repository hosts the TSFEL - Time Series Feature Extraction Libra

Associação Fraunhofer Portugal Research 589 Jan 04, 2023
Bridging Vision and Language Model

BriVL BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。 BriVL论文:WenLan: Bridgi

235 Dec 27, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
Implementation of the paper titled "Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees"

Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees Implementation of the paper titled "Using Sampling to

MIDAS, IIIT Delhi 2 Aug 29, 2022
Privacy-Preserving Portrait Matting [ACM MM-21]

Privacy-Preserving Portrait Matting [ACM MM-21] This is the official repository of the paper Privacy-Preserving Portrait Matting. Jizhizi Li∗, Sihan M

Jizhizi_Li 212 Dec 27, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022