A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

Overview

MUGEN Dataset

Project Page | Paper

Setup

conda create --name MUGEN python=3.6
conda activate MUGEN
pip install --ignore-installed https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.12.0-cp36-cp36m-linux_x86_64.whl 
module load cuda/9.0
module load cudnn/v7.4-cuda.10.0
git clone coinrun_MUGEN
cd coinrun_MUGEN
pip install -r requirements.txt
conda install -c conda-forge mpi4py
pip install -e .

Training Agents

Basic training commands:

python -m coinrun.train_agent --run-id myrun --save-interval 1

After each parameter update, this will save a copy of the agent to ./saved_models/. Results are logged to /tmp/tensorflow by default.

Run parallel training using MPI:

mpiexec -np 8 python -m coinrun.train_agent --run-id myrun

Train an agent on a fixed set of N levels. With N = 0, the training set is unbounded.

python -m coinrun.train_agent --run-id myrun --num-levels N

Continue training an agent from a checkpoint:

python -m coinrun.train_agent --run-id newrun --restore-id myrun

View training options:

python -m coinrun.train_agent --help

Example commands for MUGEN agents:

Base model

python -m coinrun.train_agent --run-id name_your_agent \
                --architecture impala --paint-vel-info 1 --dropout 0.0 --l2-weight 0.0001 \
                --num-levels 0 --use-lstm 1 --num-envs 96 --set-seed 80 \
                --bump-head-penalty 0.25 -kill-monster-reward 10.0

Add squat penalty to reduce excessive squating

python -m coinrun.train_agent --run-id gamev2_fine_tune_m4_squat_penalty \
                --architecture impala --paint-vel-info 1 --dropout 0.0 --l2-weight 0.0001 \
                --num-levels 0 --use-lstm 1 --num-envs 96 --set-seed 811 \
                --bump-head-penalty 0.1 --kill-monster-reward 5.0 --squat-penalty 0.1 \
                --restore-id gamev2_fine_tune_m4_0

Larger model

python -m coinrun.train_agent --run-id gamev2_largearch_bump_head_penalty_0.05_0 \
                --architecture impalalarge --paint-vel-info 1 --dropout 0.0 --l2-weight 0.0001 \
                --num-levels 0 --use-lstm 1 --num-envs 96 --set-seed 51 \
                --bump-head-penalty 0.05 -kill-monster-reward 10.0

Add reward for dying

python -m coinrun.train_agent --run-id gamev2_fine_tune_squat_penalty_die_reward_3.0 \
                --architecture impala --paint-vel-info 1 --dropout 0.0 --l2-weight 0.0001 \
                --num-levels 0 --use-lstm 1 --num-envs 96 --set-seed 857 \
                --bump-head-penalty 0.1 --kill-monster-reward 5.0 --squat-penalty 0.1 \
                --restore-id gamev2_fine_tune_m4_squat_penalty --die-penalty -3.0

Add jump penalty

python -m coinrun.train_agent --run-id gamev2_fine_tune_m4_jump_penalty \
                --architecture impala --paint-vel-info 1 --dropout 0.0 --l2-weight 0.0001 \
                --num-levels 0 --use-lstm 1 --num-envs 96 --set-seed 811 \
                --bump-head-penalty 0.1 --kill-monster-reward 10.0 --jump-penalty 0.1 \
                --restore-id gamev2_fine_tune_m4_0

Data Collection

Collect video data with trained agent. The following command will create a folder {save_dir}/{model_name}_seed_{seed}, which contains the audio semantic maps to reconstruct game audio, as well as the csv containing all game metadata. We use the csv for reconstructing video data in the next step.

python -m coinrun.collect_data --collect_data --paint-vel-info 1 \
                --set-seed 406 --restore-id gamev2_fine_tune_squat_penalty_timeout_300 \
                --save-dir  \
                --level-timeout 600 --num-levels-to-collect 2000

The next step is to create 3.2 second videos with audio by running the script gen_videos.sh. This script first parses the csv metadata of agent gameplay into a json format. Then, we sample 3 second clips, render to RGB, generate audio, and save .mp4s. Note that we apply some sampling logic in gen_videos.py to only generate videos for levels of sufficient length and with interesting game events. You can adjust the sampling logic to your liking here.

There are three outputs from this script:

  1. ./json_metadata - where full level jsons are saved for longer video rendering
  2. ./video_metadata - where 3.2 second video jsons are saved
  3. ./videos - where 3.2s .mp4 videos with audio are saved. We use these videos for human annotation.
bash gen_videos.sh  

For example:

bash gen_videos.sh video_data model_gamev2_fine_tune_squat_penalty_timeout_300_seed_406

License Info

The majority of MUGEN is licensed under CC-BY-NC, however portions of the project are available under separate license terms: CoinRun, VideoGPT, VideoCLIP, and S3D are licensed under the MIT license; Tokenizer is licensed under the Apache 2.0 Pycocoevalcap is licensed under the BSD license; VGGSound is licensed under the CC-BY-4.0 license.

Owner
MUGEN
MUGEN
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
This is code of book "Learn Deep Learning with PyTorch"

深度学习入门之PyTorch Learn Deep Learning with PyTorch 非常感谢您能够购买此书,这个github repository包含有深度学习入门之PyTorch的实例代码。由于本人水平有限,在写此书的时候参考了一些网上的资料,在这里对他们表示敬意。由于深度学习的技术在

Xingyu Liao 2.5k Jan 04, 2023
This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
Code for database and frontend of webpage for Neural Fields in Visual Computing and Beyond.

Neural Fields in Visual Computing—Complementary Webpage This is based on the amazing MiniConf project from Hendrik Strobelt and Sasha Rush—thank you!

Brown University Visual Computing Group 29 Nov 30, 2022
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML

54 Aug 04, 2022
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
Byzantine-robust decentralized learning via self-centered clipping

Byzantine-robust decentralized learning via self-centered clipping In this paper, we study the challenging task of Byzantine-robust decentralized trai

EPFL Machine Learning and Optimization Laboratory 4 Aug 27, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
Pytorch implementation of CoCon: A Self-Supervised Approach for Controlled Text Generation

COCON_ICLR2021 This is our Pytorch implementation of COCON. CoCon: A Self-Supervised Approach for Controlled Text Generation (ICLR 2021) Alvin Chan, Y

alvinchangw 79 Dec 18, 2022
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

NVIDIA Research Projects 132 Dec 13, 2022
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022