A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

Overview

MUGEN Dataset

Project Page | Paper

Setup

conda create --name MUGEN python=3.6
conda activate MUGEN
pip install --ignore-installed https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.12.0-cp36-cp36m-linux_x86_64.whl 
module load cuda/9.0
module load cudnn/v7.4-cuda.10.0
git clone coinrun_MUGEN
cd coinrun_MUGEN
pip install -r requirements.txt
conda install -c conda-forge mpi4py
pip install -e .

Training Agents

Basic training commands:

python -m coinrun.train_agent --run-id myrun --save-interval 1

After each parameter update, this will save a copy of the agent to ./saved_models/. Results are logged to /tmp/tensorflow by default.

Run parallel training using MPI:

mpiexec -np 8 python -m coinrun.train_agent --run-id myrun

Train an agent on a fixed set of N levels. With N = 0, the training set is unbounded.

python -m coinrun.train_agent --run-id myrun --num-levels N

Continue training an agent from a checkpoint:

python -m coinrun.train_agent --run-id newrun --restore-id myrun

View training options:

python -m coinrun.train_agent --help

Example commands for MUGEN agents:

Base model

python -m coinrun.train_agent --run-id name_your_agent \
                --architecture impala --paint-vel-info 1 --dropout 0.0 --l2-weight 0.0001 \
                --num-levels 0 --use-lstm 1 --num-envs 96 --set-seed 80 \
                --bump-head-penalty 0.25 -kill-monster-reward 10.0

Add squat penalty to reduce excessive squating

python -m coinrun.train_agent --run-id gamev2_fine_tune_m4_squat_penalty \
                --architecture impala --paint-vel-info 1 --dropout 0.0 --l2-weight 0.0001 \
                --num-levels 0 --use-lstm 1 --num-envs 96 --set-seed 811 \
                --bump-head-penalty 0.1 --kill-monster-reward 5.0 --squat-penalty 0.1 \
                --restore-id gamev2_fine_tune_m4_0

Larger model

python -m coinrun.train_agent --run-id gamev2_largearch_bump_head_penalty_0.05_0 \
                --architecture impalalarge --paint-vel-info 1 --dropout 0.0 --l2-weight 0.0001 \
                --num-levels 0 --use-lstm 1 --num-envs 96 --set-seed 51 \
                --bump-head-penalty 0.05 -kill-monster-reward 10.0

Add reward for dying

python -m coinrun.train_agent --run-id gamev2_fine_tune_squat_penalty_die_reward_3.0 \
                --architecture impala --paint-vel-info 1 --dropout 0.0 --l2-weight 0.0001 \
                --num-levels 0 --use-lstm 1 --num-envs 96 --set-seed 857 \
                --bump-head-penalty 0.1 --kill-monster-reward 5.0 --squat-penalty 0.1 \
                --restore-id gamev2_fine_tune_m4_squat_penalty --die-penalty -3.0

Add jump penalty

python -m coinrun.train_agent --run-id gamev2_fine_tune_m4_jump_penalty \
                --architecture impala --paint-vel-info 1 --dropout 0.0 --l2-weight 0.0001 \
                --num-levels 0 --use-lstm 1 --num-envs 96 --set-seed 811 \
                --bump-head-penalty 0.1 --kill-monster-reward 10.0 --jump-penalty 0.1 \
                --restore-id gamev2_fine_tune_m4_0

Data Collection

Collect video data with trained agent. The following command will create a folder {save_dir}/{model_name}_seed_{seed}, which contains the audio semantic maps to reconstruct game audio, as well as the csv containing all game metadata. We use the csv for reconstructing video data in the next step.

python -m coinrun.collect_data --collect_data --paint-vel-info 1 \
                --set-seed 406 --restore-id gamev2_fine_tune_squat_penalty_timeout_300 \
                --save-dir  \
                --level-timeout 600 --num-levels-to-collect 2000

The next step is to create 3.2 second videos with audio by running the script gen_videos.sh. This script first parses the csv metadata of agent gameplay into a json format. Then, we sample 3 second clips, render to RGB, generate audio, and save .mp4s. Note that we apply some sampling logic in gen_videos.py to only generate videos for levels of sufficient length and with interesting game events. You can adjust the sampling logic to your liking here.

There are three outputs from this script:

  1. ./json_metadata - where full level jsons are saved for longer video rendering
  2. ./video_metadata - where 3.2 second video jsons are saved
  3. ./videos - where 3.2s .mp4 videos with audio are saved. We use these videos for human annotation.
bash gen_videos.sh  

For example:

bash gen_videos.sh video_data model_gamev2_fine_tune_squat_penalty_timeout_300_seed_406

License Info

The majority of MUGEN is licensed under CC-BY-NC, however portions of the project are available under separate license terms: CoinRun, VideoGPT, VideoCLIP, and S3D are licensed under the MIT license; Tokenizer is licensed under the Apache 2.0 Pycocoevalcap is licensed under the BSD license; VGGSound is licensed under the CC-BY-4.0 license.

Owner
MUGEN
MUGEN
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021) Kun Wang, Zhenyu Zhang, Zhiqiang Yan, X

kunwang 66 Nov 24, 2022
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 08, 2023
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
FeTaQA: Free-form Table Question Answering

FeTaQA: Free-form Table Question Answering FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form

Language, Information, and Learning at Yale 40 Dec 13, 2022
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022

Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any

yueliu1999 109 Dec 23, 2022
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
Pseudo-rng-app - whos needs science to make a random number when you have pseudoscience?

Pseudo-random numbers with pseudoscience rng is so complicated! Why cant we have a horoscopic, vibe-y way of calculating a random number? Why cant rng

Andrew Blance 1 Dec 27, 2021
Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

NIRPS-ETC Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph February 2

Nolan Grieves 2 Sep 15, 2022
Synthesizing and manipulating 2048x1024 images with conditional GANs

pix2pixHD Project | Youtube | Paper Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translatio

NVIDIA Corporation 6k Dec 27, 2022
Clustering is a popular approach to detect patterns in unlabeled data

Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data

Tarek Naous 24 Nov 11, 2022