PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Overview

Recommender System in PyTorch

Implementations of various top-N recommender systems in PyTorch for practice.

Movielens 100k & 1M are used as datasets.

Available models

Model Paper
BPRMF Steffen Rendle et al., BPR: Bayesian Personalized Ranking from Implicit Feedback. UAI 2009. Link
ItemKNN Jun Wang et al., Unifying user-based and item-based collaborative filtering approaches by similarity fusion. SIGIR 2006. Link
PureSVD Paolo Cremonesi et al., Performance of Recommender Algorithms on Top-N Recommendation Tasks. RecSys 2010. Link
SLIM Xia Ning et al., SLIM: Sparse Linear Methods for Top-N Recommender Systems. ICDM 2011. Link
P3a Colin Cooper et al., Random Walks in Recommender Systems: Exact Computation and Simulations. WWW 2014. Link
RP3b Bibek Paudel et al., Updatable, accurate, diverse, and scalablerecommendations for interactive applications. TiiS 2017. Link
DAE, CDAE Yao Wu et al., Collaborative denoising auto-encoders for top-n recommender systems. WSDM 2016.Link
MultVAE Dawen Liang et al., Variational Autoencoders for Collaborative Filtering. WWW 2018. Link
EASE Harald Steck, Embarrassingly Shallow Autoencoders for Sparse Data. WWW 2019. Link
NGCF Xiang Wang, et al., Neural Graph Collaborative Filtering. SIGIR 2019. Link
LightGCN Xiangnan He, et al., LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020. Link

Enable C++ evaluation

To evaluate with C++ backend, you have to compile C++ and cython with the following script:

python setup.py build_ext --inplace

If compiled NOT successfully, "evaluation with python backend.." will be printed in the beginning.

How to run

  1. Edit experiment configurations in config.py
  2. Edit model hyperparameters you choose in conf/[MODEL_NAME]
  3. run main.py

Implement your own model

You can add your own model into the framework if:

  1. Your model inherits BaseModel class in models/BaseModel.py
  2. Implement necessary methods and add additional methods if you want.
  3. Make YourModel.conf file in conf
  4. Add your model in models.__init__

Reference

Some model implementations and util functions refers to these nice repositories.

Owner
Yoonki Jeong
Research Engineer at NAVER Corp.
Yoonki Jeong
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

AI-Health @NSCC-gz 83 Dec 24, 2022
OptaPlanner wrappers for Python. Currently significantly slower than OptaPlanner in Java or Kotlin.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 211 Jan 02, 2023
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Panoptic Mapping This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based

ETHZ ASL 194 Dec 20, 2022
Keeper for Ricochet Protocol, implemented with Apache Airflow

Ricochet Keeper This repository contains Apache Airflow DAGs for executing keeper operations for Ricochet Exchange. Usage You will need to run this us

Ricochet Exchange 5 May 24, 2022
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
When are Iterative GPs Numerically Accurate?

When are Iterative GPs Numerically Accurate? This is a code repository for the paper "When are Iterative GPs Numerically Accurate?" by Wesley Maddox,

Wesley Maddox 1 Jan 06, 2022
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
Dilated RNNs in pytorch

PyTorch Dilated Recurrent Neural Networks PyTorch implementation of Dilated Recurrent Neural Networks (DilatedRNN). Getting Started Installation: $ pi

Zalando Research 200 Nov 17, 2022
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks

MEAL-V2 This is the official pytorch implementation of our paper: "MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tric

Zhiqiang Shen 653 Dec 19, 2022
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
Official implementation of "Implicit Neural Representations with Periodic Activation Functions"

Implicit Neural Representations with Periodic Activation Functions Project Page | Paper | Data Vincent Sitzmann*, Julien N. P. Martel*, Alexander W. B

Vincent Sitzmann 1.4k Jan 06, 2023
Pca-on-genotypes - Mini bioinformatics project - PCA on genotypes

Mini bioinformatics project: PCA on genotypes This repo contains the code from t

Maria Nattestad 8 Dec 04, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022