Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?", by Matthew Farrell, Blake Bordelon, Shubhendu Trivedi, and Cengiz Pehlevan. Note that the file models/vgg.py contains copyright statements for the original authors and modifiers of the script. The python packages used for the simulations are contained in environment.yml (this may include extra packages that are not necessary). To generate Figure 1, run python manifold_plots.py This script is fairly simple and self-explanatory. To generate Figures 2 and 3, run python plot_cnn_capacity.py At the bottom of the plot_cnn_capacity.py script, the plotting function is called for different panels. Comment out lines to generate specific figures. This script searches for a match with sets of parameters defined in cnn_capacity_params.py. To modify parameters used for simulations, modify the dictionaries in cnn_capacity_params.py or define your own parameter sets. For a description of different parameter options, see the docstring for the function cnn_capacity.get_capacity. The simulations take quite a lot of time to run, even with parallelization. Also a word of warning that the simulations take a lot of memory (~100GB for n_cores=5). To speed things up and reduce memory usage, one can set perceptron_style=efficient or pool_over_group=True, or reduce n_dichotomies. One can also choose to set seeds to seeds = [3] in plot_cnn_capacity.py. cnn_capacity_utils.py contains utility functions. The VGG model can be found in models/vgg.py. The direct sum (aka "grid cell") convolutional network model can be found in models/gridcellconv.py The code for generating datasets can be found in datasets.py. The code was modified and superficially refactored in preparation for releasing to the public. The simulations haven't been thoroughly tested after this refactoring so it's not 100% guaranteed that the code is correct (though it doesn't appear to throw errors). Fingers crossed that everything works the way it should. The development of this code was supported by the Harvard Data Science Initiative.
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"
Overview
Owner
Matthew Farrell
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'
Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021
Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V
🤖 A Python library for learning and evaluating knowledge graph embeddings
PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m
Implementation of "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing".
DeepOrder Implementation of DeepOrder for the paper "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing". Project
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)
Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation
Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat
Interpretable-contrastive-word-mover-s-embedding
Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)
Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O
Open-source implementation of Google Vizier for hyper parameters tuning
Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"
NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement
This repository contains all code and data for the Inside Out Visual Place Recognition task
Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio
Image-to-image translation with conditional adversarial nets
pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning
Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi
Neural network-based build time estimation for additive manufacturing
Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim
Code release for Convolutional Two-Stream Network Fusion for Video Action Recognition
Convolutional Two-Stream Network Fusion for Video Action Recognition
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)
Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener
This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints
CLGo This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints An earlier
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo