Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?", by Matthew Farrell, Blake Bordelon, Shubhendu Trivedi, and Cengiz Pehlevan. Note that the file models/vgg.py contains copyright statements for the original authors and modifiers of the script. The python packages used for the simulations are contained in environment.yml (this may include extra packages that are not necessary). To generate Figure 1, run python manifold_plots.py This script is fairly simple and self-explanatory. To generate Figures 2 and 3, run python plot_cnn_capacity.py At the bottom of the plot_cnn_capacity.py script, the plotting function is called for different panels. Comment out lines to generate specific figures. This script searches for a match with sets of parameters defined in cnn_capacity_params.py. To modify parameters used for simulations, modify the dictionaries in cnn_capacity_params.py or define your own parameter sets. For a description of different parameter options, see the docstring for the function cnn_capacity.get_capacity. The simulations take quite a lot of time to run, even with parallelization. Also a word of warning that the simulations take a lot of memory (~100GB for n_cores=5). To speed things up and reduce memory usage, one can set perceptron_style=efficient or pool_over_group=True, or reduce n_dichotomies. One can also choose to set seeds to seeds = [3] in plot_cnn_capacity.py. cnn_capacity_utils.py contains utility functions. The VGG model can be found in models/vgg.py. The direct sum (aka "grid cell") convolutional network model can be found in models/gridcellconv.py The code for generating datasets can be found in datasets.py. The code was modified and superficially refactored in preparation for releasing to the public. The simulations haven't been thoroughly tested after this refactoring so it's not 100% guaranteed that the code is correct (though it doesn't appear to throw errors). Fingers crossed that everything works the way it should. The development of this code was supported by the Harvard Data Science Initiative.
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"
Overview
Owner
Matthew Farrell
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)
Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT
LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment
Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea
This repo includes the supplementary of our paper "CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels"
Supplementary Materials for CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels This repository includes all supplementary mater
Simple embedding based text classifier inspired by fastText, implemented in tensorflow
FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of
An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge.
Bottom-Up and Top-Down Attention for Visual Question Answering An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge. The
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l
Populating 3D Scenes by Learning Human-Scene Interaction https://posa.is.tue.mpg.de/
Populating 3D Scenes by Learning Human-Scene Interaction [Project Page] [Paper] License Software Copyright License for non-commercial scientific resea
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.
Rendering color and depth images for ShapeNet models.
Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas
POCO: Point Convolution for Surface Reconstruction
POCO: Point Convolution for Surface Reconstruction by: Alexandre Boulch and Renaud Marlet Abstract Implicit neural networks have been successfully use
Convolutional Neural Network to detect deforestation in the Amazon Rainforest
Convolutional Neural Network to detect deforestation in the Amazon Rainforest This project is part of my final work as an Aerospace Engineering studen
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)
Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho
pytorch implementation of GPV-Pose
GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing
Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.
Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s
Face detection using deep learning.
Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers
EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)
Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.
A proof of concept ai-powered Recaptcha v2 solver
Recaptcha Fullauto I've decided to open source my old Recaptcha v2 solver. My latest version will be opened sourced this summer. I am hoping this proj