Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?", by Matthew Farrell, Blake Bordelon, Shubhendu Trivedi, and Cengiz Pehlevan. Note that the file models/vgg.py contains copyright statements for the original authors and modifiers of the script. The python packages used for the simulations are contained in environment.yml (this may include extra packages that are not necessary). To generate Figure 1, run python manifold_plots.py This script is fairly simple and self-explanatory. To generate Figures 2 and 3, run python plot_cnn_capacity.py At the bottom of the plot_cnn_capacity.py script, the plotting function is called for different panels. Comment out lines to generate specific figures. This script searches for a match with sets of parameters defined in cnn_capacity_params.py. To modify parameters used for simulations, modify the dictionaries in cnn_capacity_params.py or define your own parameter sets. For a description of different parameter options, see the docstring for the function cnn_capacity.get_capacity. The simulations take quite a lot of time to run, even with parallelization. Also a word of warning that the simulations take a lot of memory (~100GB for n_cores=5). To speed things up and reduce memory usage, one can set perceptron_style=efficient or pool_over_group=True, or reduce n_dichotomies. One can also choose to set seeds to seeds = [3] in plot_cnn_capacity.py. cnn_capacity_utils.py contains utility functions. The VGG model can be found in models/vgg.py. The direct sum (aka "grid cell") convolutional network model can be found in models/gridcellconv.py The code for generating datasets can be found in datasets.py. The code was modified and superficially refactored in preparation for releasing to the public. The simulations haven't been thoroughly tested after this refactoring so it's not 100% guaranteed that the code is correct (though it doesn't appear to throw errors). Fingers crossed that everything works the way it should. The development of this code was supported by the Harvard Data Science Initiative.
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"
Overview
Owner
Matthew Farrell
Machine Unlearning with SISA
Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N
Tool for installing and updating MiSTer cores and other files
MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa
Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646
[TCSVT] Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization LPN [Paper] NEWs Prerequisites Python 3.6 GPU Memory = 8G Numpy 1.
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve
PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e
E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides
E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides
Studying Python release adoptions by looking at PyPI downloads
Analysis of version adoptions on PyPI We get PyPI download statistics via Google's BigQuery using the pypinfo tool. Usage First you need to get an acc
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.
LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-ba
a reimplementation of Holistically-Nested Edge Detection in PyTorch
pytorch-hed This is a personal reimplementation of Holistically-Nested Edge Detection [1] using PyTorch. Should you be making use of this work, please
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks Contributions A novel pairwise feature LSP to extract structural
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer
HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape
Learning the Beauty in Songs: Neural Singing Voice Beautifier; ACL 2022 (Main conference); Official code
Learning the Beauty in Songs: Neural Singing Voice Beautifier Jinglin Liu, Chengxi Li, Yi Ren, Zhiying Zhu, Zhou Zhao Zhejiang University ACL 2022 Mai
2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.
TableMASTER-mmocr Contents About The Project Method Description Dependency Getting Started Prerequisites Installation Usage Data preprocess Train Infe
QA-GNN: Question Answering using Language Models and Knowledge Graphs
QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation
: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w
This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''
The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition This is the offical website for paper ''
Multiview Dataset Toolkit
Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D
YOLOv3 in PyTorch > ONNX > CoreML > TFLite
This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices
[ECCV'20] Convolutional Occupancy Networks
Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o
Enhancing Knowledge Tracing via Adversarial Training
Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T