NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Overview

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning

Tim Pearce, Jun Zhu
Offline RL workshop, NeurIPS 2021
Paper: https://arxiv.org/abs/2104.04258
Four minute introduction video: https://youtu.be/rnz3lmfSHv0
Gameplay examples: https://youtu.be/KTY7UhjIMm4

Contents

  1. Code Overview
  2. Trained Models
  3. Datasets
  4. Requirements
  5. License
  6. Disclaimer
  7. Maintenance

Code Overview

We briefly describe the workflow: dataset capture -> data processing -> training -> testing.

  1. Use dm_record_data.py to scrape data as a spectator, or dm_record_data_me_wasd.py to record when actively playing. This creates .npy files with screenshots and metadata.
  2. Run dm_infer_actions.py on .npy files from step 1 to infer actions from the metadata ('inverse dynamics model'). These are appended to the same .npy files. The visulations and stats produced by this script can be used to clean the data -- e.g. if the metadata from GSI and RAM disagrees for some variables, this is a sign that the data might be unreliable, if there are long periods of immobility (vel_static), this can mean you were tracking a motionless player. We suggest deleting such files.
  3. Run dm_pretrain_process.py on .npy files from step 2, this creates new .hdf5 files containing screenshots and onehot targets.
  4. (Optional.) Run tools_extract_metaadata.py to pull out metadata from the .npy files, saves as new .npy file.
  5. Run dm_train_model.py to train a model.
  6. Use tools_create_stateful.py to create a 'stateful' version of the model.
  7. Script dm_run_agent.py runs the model in the CSGO environment.

Brief overview of each script's purpose.

  • config.py : Contains key global hyperparameters and settings. Also several functions used across many scripts.
  • screen_input.py : Gets screenshot of the CSGO window, does some cropping and downsampling. Uses win32gui, win32ui, win32con, OpenCV.
  • key_output.py : Contains functions to send mouse clicks, set mouse position and key presses. Uses ctypes.
  • key_output.py : Contains functions to check for mouse location, mouse clicks and key presses. Uses win32api and ctypes.
  • meta_utils.py : Contains functions to set up RAM reading. Also contains a server class to connect to CSGO's GSI tool -- you should update MYTOKENHERE variable if setting up GSI.
  • dm_hazedumper_offsets.py : Contains offsets to read variables from RAM directly. They updated by the function in meta_utils.py.
  • dm_record_data.py : Records screenshots and metadata when in spectator mode. (Note these record scripts can be temperamental, and depend on hazedumper offsets being up to date.)
  • dm_record_data_me_wasd.py : Records screenshots and metadata when actively playing on local machine.
  • dm_infer_actions.py : For recorded dataset, infer actions from metadata and append to same file. Also stats indicative of data quality, and some functionality to rename files sequentially.
  • dm_pretrain_process.py : Takes .npy files from dm_infer_actions.py, and creates twin .hdf5 files ready for fast data loading with inputs and labels as expected by model. Also a function to strip image from .npy files.
  • dm_train_model.py : Trains the neural network model. Either from scratch or from a previous checkpoint.
  • dm_run_agent.py : Runs a trained model in CSGO. Option to collect metadata (eg score) using IS_GSI=True.
  • tools_dataset_inspect.py : Minimal code to open different datasets and accompanying metadata files.
  • tools_extract_metadata.py : Cuts out metadata (currvars, infer_a and helper_arr) from the original .npy files, and saves as new .npy without image. Aggregates 100 files together.
  • tools_dataset_stats.py : Collates metadata from the large online dataset, and produces summary stats and figures as in appendix A.
  • tools_create_stateful.py : This takes a trained 'non-stateful' model and saves a cloned 'stateful' version that should be used at test time (otherwise LSTM states reset between each forward pass). Required due to keras weirdness.
  • tools_map_coverage_analysis.py : Visualises map coverage of different agent and datasets, computes Earth mover's distance.
  • tools_view_save_egs.py : Opens and displays sequences of images .hdf5 and metadata .npy. Option of overlaying inferred actions. Option of saving as .png.
  • console_csgo_setup.txt : Console commands for setting up CSGO levels.

Trained Models

Four trained models are provided. There are 'non-stateful' (use during training) and 'stateful' (use at test time) versions of each.
Download link: https://drive.google.com/drive/folders/11n5Nxj6liSXKP6_vl-FjwfRHtWiSO6Ry?usp=sharing

  • ak47_sub_55k_drop_d4 : Pretrained on AK47 sequences only.
  • ak47_sub_55k_drop_d4_dmexpert_28 : Finetuned on expert deathmatch data.
  • ak47_sub_55k_drop_d4_aimexpertv2_60 : Finetuned on aim mode expert data.
  • July_remoterun7_g9_4k_n32_recipe_ton96__e14 : Pretrained on full dataset.

Datasets

For access to all datasets, please email the first author (tp424 at cam dot ac dot uk) with the title 'csgo dataset access' and a one sentence summary of how you intend to use the data. The email address you send from will be granted access to the cloud account. A brief description of dataset and directory structure is given below.

  • dataset_dm_scraped_dust2/hdf5_dm_july2021_*.hdf5

    • total files: 5500
    • approx size: 700 GB
    • map: dust2
    • gamemode: deathmatch
    • source: scraped from online servers
  • dataset_dm_expert_dust2/hdf5_dm_july2021_expert_*.hdf5

    • total files: 190
    • approx size: 24 GB
    • map: dust2
    • gamemode: deathmatch
    • source: manually created, clean actions
  • dataset_aim_expert/hdf5_aim_july2021_expert_*.hdf5

    • total files: 45
    • approx size: 6 GB
    • map: aim map
    • gamemode: aim mode
    • source: manually created, clean actions
  • dataset_dm_expert_othermaps/hdf5_dm_nuke_expert_*.hdf5

    • total files: 10
    • approx size: 1 GB
    • map: nuke
    • gamemode: deathmatch
    • source: manually created, clean actions
  • dataset_dm_expert_othermaps/hdf5_dm_nuke_expert_*.hdf5

    • total files: 10
    • approx size: 1 GB
    • map: nuke
    • gamemode: deathmatch
    • source: manually created, clean actions
  • dataset_dm_expert_othermaps/hdf5_dm_inferno_expert_*.hdf5

    • total files: 10
    • approx size: 1 GB
    • map: mirage
    • gamemode: deathmatch
    • source: manually created, clean actions
  • dataset_metadata/currvarsv2_dm_july2021_*_to_*.npy, currvarsv2_dm_july2021_expert_*_to_*.npy, currvarsv2_dm_mirage_expert_1_to_100.npy, currvarsv2_dm_inferno_expert_1_to_100.npy, currvarsv2_dm_nuke_expert_1_to_100.npy, currvarsv2_aim_july2021_expert_1_to_100.npy

    • total files: 55 + 2 + 1 + 1 + 1 + 1 = 61
    • approx size: 6 GB
    • map: as per filename
    • gamemode: as per filename
    • source: as per filename
  • location_trackings_backup/

    • total files: 305
    • approx size: 0.5 GB
    • map: dust2
    • gamemode: deathmatch
    • source: contains metadata used to compute map coverage analysis
      • currvarsv2_agentj22 is the agent trained over the full online dataset
      • currvarsv2_agentj22_dmexpert20 is previous model finetuned on the clean expert dust2 dataset
      • currvarsv2_bot_capture is medium difficulty built-in bot

Structure of .hdf5 files (image and action labels):

Each file contains an ordered sequence of 1000 frames (~1 minute) of play. This contains screenshots, as well as processed action labels. We chose .hdf5 format for fast dataloading, since a subset of frames can be accessed without opening the full file. The lookup keys are as follows (where i is frame number 0-999)

  • frame_i_x: is the image
  • frame_i_xaux: contains actions applied in previous timesteps, as well as health, ammo, and team. see dm_pretrain_preprocess.py for details, note this was not used in our final version of the agent
  • frame_i_y: contains target actions in flattened vector form; [keys_pressed_onehot, Lclicks_onehot, Rclicks_onehot, mouse_x_onehot, mouse_y_onehot]
  • frame_i_helperarr: in format [kill_flag, death_flag], each a binary variable, e.g. [1,0] means the player scored a kill and did not die in that timestep

Structure of .npy files (scraped metadata):

Each .npy file contains metadata corresponding to 100 .hdf5 files (as indicated by file name) They are dictionaries with keys of format: file_numi_frame_j for file number i, and frame number j in 0-999 The values are of format [curr_vars, infer_a, frame_i_helperarr] where,

  • curr_vars: contains a dictionary of the metadata originally scraped -- see dm_record_data.py for details
  • infer_a: are inferred actions, [keys_pressed,mouse_x,mouse_y,press_mouse_l,press_mouse_r], with mouse_x and y being continuous values and keys_pressed is in string format
  • frame_i_helperarr: is a repeat of the .hdf5 file

Requirements

Python and OS requirements

Below are the Python package versions used in development. The OS used for interacting with the game (testing and recording) was Windows, and for model training was Linux.

Python: '3.6.9' 
tensorflow: '2.3.0'
tensorflow.keras: '2.4.0'
h5py: '2.10.0'
numpy: '1.18.5'
OpenCV (cv2): '4.4.0'
scipy: '1.4.1'
ctypes: '1.1.0'
json: '2.0.9'

Hardware

Running the agent requires making forward passes through a large convolutional neural networks at 16 fps. If you do not have a CUDA enabled GPU, the agent's performance may degrade.

CSGO requirements

We collected the datasets and conducted testing over game versions 1.37.7.0 to 1.38.0.1. CSGO is continually updated and this may affect performance. The map dust2 received minor updates in 1.38.0.2. To test on the map from version 1.38.0.1, download here: https://steamcommunity.com/sharedfiles/filedetails/?id=2606435621. Future updates to gameplay may also degrade performance, consider rolling back the CSGO game version in this case.

Game State Integration (GSI) is used to pull out some metadata about the game. The dm_run_agent.py script is written so that it may be run without installing GSI (option IS_GSI). If you'd like to record data or extract metadata while running the agent, you'll need to set up GSI: https://www.reddit.com/r/GlobalOffensive/comments/cjhcpy/game_state_integration_a_very_large_and_indepth/ and update MYTOKENHERE in meta_utils.py.

Game settings (resolution, cross hair, mouse sensitivity etc) are documented in the paper, appendix E.

License

This repo can be used for personal projects and open-sourced research. We do not grant a license for its commercial use in any form. If in doubt, please contact us for permission.

Disclaimer

Whilst our code is not intended for cheating/hacking purposes, it's possible that Valve may detect the usage of some of these scripts in game (for example simulated mouse movements and RAM parsing) which in turn might lead to suspicion of cheating. We accept no liability for these sort of issues. Use it at your own risk!

Maintenance

This repo shares code used for academic research. It's not production ready. It's unlikely to be robust across operating systems, python versions, python packages, future CSGO updates etc. There's no plan to actively maintain this repo for these purposes, nor to fix minor bugs. If you'd like to help out with this, please reach out.

Owner
Tim Pearce
AI researcher \\ Curr: Tsinghua Uni \\ Prev: Cambridge Uni
Tim Pearce
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
JugLab 33 Dec 30, 2022
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

5 Nov 21, 2022
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》

RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai

Youzhi Gu 7 Nov 27, 2021
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022
IGCN : Image-to-graph convolutional network

IGCN : Image-to-graph convolutional network IGCN is a learning framework for 2D/3D deformable model registration and alignment, and shape reconstructi

Megumi Nakao 7 Oct 27, 2022
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,

130 Dec 11, 2022
A simple AI that will give you si ple task and this is made with python

Crystal-AI A simple AI that will give you si ple task and this is made with python Prerequsites: Python3.6.2 pyttsx3 pip install pyttsx3 pyaudio pip i

CrystalAnd 1 Dec 25, 2021
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

Graph Convolutional Gated Recurrent Neural Network (GCGRNN) Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF

Lei Lin 21 Dec 18, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Libo Qin 25 Sep 06, 2022
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Ibai Gorordo 2 Oct 04, 2021
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022