NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Overview

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning

Tim Pearce, Jun Zhu
Offline RL workshop, NeurIPS 2021
Paper: https://arxiv.org/abs/2104.04258
Four minute introduction video: https://youtu.be/rnz3lmfSHv0
Gameplay examples: https://youtu.be/KTY7UhjIMm4

Contents

  1. Code Overview
  2. Trained Models
  3. Datasets
  4. Requirements
  5. License
  6. Disclaimer
  7. Maintenance

Code Overview

We briefly describe the workflow: dataset capture -> data processing -> training -> testing.

  1. Use dm_record_data.py to scrape data as a spectator, or dm_record_data_me_wasd.py to record when actively playing. This creates .npy files with screenshots and metadata.
  2. Run dm_infer_actions.py on .npy files from step 1 to infer actions from the metadata ('inverse dynamics model'). These are appended to the same .npy files. The visulations and stats produced by this script can be used to clean the data -- e.g. if the metadata from GSI and RAM disagrees for some variables, this is a sign that the data might be unreliable, if there are long periods of immobility (vel_static), this can mean you were tracking a motionless player. We suggest deleting such files.
  3. Run dm_pretrain_process.py on .npy files from step 2, this creates new .hdf5 files containing screenshots and onehot targets.
  4. (Optional.) Run tools_extract_metaadata.py to pull out metadata from the .npy files, saves as new .npy file.
  5. Run dm_train_model.py to train a model.
  6. Use tools_create_stateful.py to create a 'stateful' version of the model.
  7. Script dm_run_agent.py runs the model in the CSGO environment.

Brief overview of each script's purpose.

  • config.py : Contains key global hyperparameters and settings. Also several functions used across many scripts.
  • screen_input.py : Gets screenshot of the CSGO window, does some cropping and downsampling. Uses win32gui, win32ui, win32con, OpenCV.
  • key_output.py : Contains functions to send mouse clicks, set mouse position and key presses. Uses ctypes.
  • key_output.py : Contains functions to check for mouse location, mouse clicks and key presses. Uses win32api and ctypes.
  • meta_utils.py : Contains functions to set up RAM reading. Also contains a server class to connect to CSGO's GSI tool -- you should update MYTOKENHERE variable if setting up GSI.
  • dm_hazedumper_offsets.py : Contains offsets to read variables from RAM directly. They updated by the function in meta_utils.py.
  • dm_record_data.py : Records screenshots and metadata when in spectator mode. (Note these record scripts can be temperamental, and depend on hazedumper offsets being up to date.)
  • dm_record_data_me_wasd.py : Records screenshots and metadata when actively playing on local machine.
  • dm_infer_actions.py : For recorded dataset, infer actions from metadata and append to same file. Also stats indicative of data quality, and some functionality to rename files sequentially.
  • dm_pretrain_process.py : Takes .npy files from dm_infer_actions.py, and creates twin .hdf5 files ready for fast data loading with inputs and labels as expected by model. Also a function to strip image from .npy files.
  • dm_train_model.py : Trains the neural network model. Either from scratch or from a previous checkpoint.
  • dm_run_agent.py : Runs a trained model in CSGO. Option to collect metadata (eg score) using IS_GSI=True.
  • tools_dataset_inspect.py : Minimal code to open different datasets and accompanying metadata files.
  • tools_extract_metadata.py : Cuts out metadata (currvars, infer_a and helper_arr) from the original .npy files, and saves as new .npy without image. Aggregates 100 files together.
  • tools_dataset_stats.py : Collates metadata from the large online dataset, and produces summary stats and figures as in appendix A.
  • tools_create_stateful.py : This takes a trained 'non-stateful' model and saves a cloned 'stateful' version that should be used at test time (otherwise LSTM states reset between each forward pass). Required due to keras weirdness.
  • tools_map_coverage_analysis.py : Visualises map coverage of different agent and datasets, computes Earth mover's distance.
  • tools_view_save_egs.py : Opens and displays sequences of images .hdf5 and metadata .npy. Option of overlaying inferred actions. Option of saving as .png.
  • console_csgo_setup.txt : Console commands for setting up CSGO levels.

Trained Models

Four trained models are provided. There are 'non-stateful' (use during training) and 'stateful' (use at test time) versions of each.
Download link: https://drive.google.com/drive/folders/11n5Nxj6liSXKP6_vl-FjwfRHtWiSO6Ry?usp=sharing

  • ak47_sub_55k_drop_d4 : Pretrained on AK47 sequences only.
  • ak47_sub_55k_drop_d4_dmexpert_28 : Finetuned on expert deathmatch data.
  • ak47_sub_55k_drop_d4_aimexpertv2_60 : Finetuned on aim mode expert data.
  • July_remoterun7_g9_4k_n32_recipe_ton96__e14 : Pretrained on full dataset.

Datasets

For access to all datasets, please email the first author (tp424 at cam dot ac dot uk) with the title 'csgo dataset access' and a one sentence summary of how you intend to use the data. The email address you send from will be granted access to the cloud account. A brief description of dataset and directory structure is given below.

  • dataset_dm_scraped_dust2/hdf5_dm_july2021_*.hdf5

    • total files: 5500
    • approx size: 700 GB
    • map: dust2
    • gamemode: deathmatch
    • source: scraped from online servers
  • dataset_dm_expert_dust2/hdf5_dm_july2021_expert_*.hdf5

    • total files: 190
    • approx size: 24 GB
    • map: dust2
    • gamemode: deathmatch
    • source: manually created, clean actions
  • dataset_aim_expert/hdf5_aim_july2021_expert_*.hdf5

    • total files: 45
    • approx size: 6 GB
    • map: aim map
    • gamemode: aim mode
    • source: manually created, clean actions
  • dataset_dm_expert_othermaps/hdf5_dm_nuke_expert_*.hdf5

    • total files: 10
    • approx size: 1 GB
    • map: nuke
    • gamemode: deathmatch
    • source: manually created, clean actions
  • dataset_dm_expert_othermaps/hdf5_dm_nuke_expert_*.hdf5

    • total files: 10
    • approx size: 1 GB
    • map: nuke
    • gamemode: deathmatch
    • source: manually created, clean actions
  • dataset_dm_expert_othermaps/hdf5_dm_inferno_expert_*.hdf5

    • total files: 10
    • approx size: 1 GB
    • map: mirage
    • gamemode: deathmatch
    • source: manually created, clean actions
  • dataset_metadata/currvarsv2_dm_july2021_*_to_*.npy, currvarsv2_dm_july2021_expert_*_to_*.npy, currvarsv2_dm_mirage_expert_1_to_100.npy, currvarsv2_dm_inferno_expert_1_to_100.npy, currvarsv2_dm_nuke_expert_1_to_100.npy, currvarsv2_aim_july2021_expert_1_to_100.npy

    • total files: 55 + 2 + 1 + 1 + 1 + 1 = 61
    • approx size: 6 GB
    • map: as per filename
    • gamemode: as per filename
    • source: as per filename
  • location_trackings_backup/

    • total files: 305
    • approx size: 0.5 GB
    • map: dust2
    • gamemode: deathmatch
    • source: contains metadata used to compute map coverage analysis
      • currvarsv2_agentj22 is the agent trained over the full online dataset
      • currvarsv2_agentj22_dmexpert20 is previous model finetuned on the clean expert dust2 dataset
      • currvarsv2_bot_capture is medium difficulty built-in bot

Structure of .hdf5 files (image and action labels):

Each file contains an ordered sequence of 1000 frames (~1 minute) of play. This contains screenshots, as well as processed action labels. We chose .hdf5 format for fast dataloading, since a subset of frames can be accessed without opening the full file. The lookup keys are as follows (where i is frame number 0-999)

  • frame_i_x: is the image
  • frame_i_xaux: contains actions applied in previous timesteps, as well as health, ammo, and team. see dm_pretrain_preprocess.py for details, note this was not used in our final version of the agent
  • frame_i_y: contains target actions in flattened vector form; [keys_pressed_onehot, Lclicks_onehot, Rclicks_onehot, mouse_x_onehot, mouse_y_onehot]
  • frame_i_helperarr: in format [kill_flag, death_flag], each a binary variable, e.g. [1,0] means the player scored a kill and did not die in that timestep

Structure of .npy files (scraped metadata):

Each .npy file contains metadata corresponding to 100 .hdf5 files (as indicated by file name) They are dictionaries with keys of format: file_numi_frame_j for file number i, and frame number j in 0-999 The values are of format [curr_vars, infer_a, frame_i_helperarr] where,

  • curr_vars: contains a dictionary of the metadata originally scraped -- see dm_record_data.py for details
  • infer_a: are inferred actions, [keys_pressed,mouse_x,mouse_y,press_mouse_l,press_mouse_r], with mouse_x and y being continuous values and keys_pressed is in string format
  • frame_i_helperarr: is a repeat of the .hdf5 file

Requirements

Python and OS requirements

Below are the Python package versions used in development. The OS used for interacting with the game (testing and recording) was Windows, and for model training was Linux.

Python: '3.6.9' 
tensorflow: '2.3.0'
tensorflow.keras: '2.4.0'
h5py: '2.10.0'
numpy: '1.18.5'
OpenCV (cv2): '4.4.0'
scipy: '1.4.1'
ctypes: '1.1.0'
json: '2.0.9'

Hardware

Running the agent requires making forward passes through a large convolutional neural networks at 16 fps. If you do not have a CUDA enabled GPU, the agent's performance may degrade.

CSGO requirements

We collected the datasets and conducted testing over game versions 1.37.7.0 to 1.38.0.1. CSGO is continually updated and this may affect performance. The map dust2 received minor updates in 1.38.0.2. To test on the map from version 1.38.0.1, download here: https://steamcommunity.com/sharedfiles/filedetails/?id=2606435621. Future updates to gameplay may also degrade performance, consider rolling back the CSGO game version in this case.

Game State Integration (GSI) is used to pull out some metadata about the game. The dm_run_agent.py script is written so that it may be run without installing GSI (option IS_GSI). If you'd like to record data or extract metadata while running the agent, you'll need to set up GSI: https://www.reddit.com/r/GlobalOffensive/comments/cjhcpy/game_state_integration_a_very_large_and_indepth/ and update MYTOKENHERE in meta_utils.py.

Game settings (resolution, cross hair, mouse sensitivity etc) are documented in the paper, appendix E.

License

This repo can be used for personal projects and open-sourced research. We do not grant a license for its commercial use in any form. If in doubt, please contact us for permission.

Disclaimer

Whilst our code is not intended for cheating/hacking purposes, it's possible that Valve may detect the usage of some of these scripts in game (for example simulated mouse movements and RAM parsing) which in turn might lead to suspicion of cheating. We accept no liability for these sort of issues. Use it at your own risk!

Maintenance

This repo shares code used for academic research. It's not production ready. It's unlikely to be robust across operating systems, python versions, python packages, future CSGO updates etc. There's no plan to actively maintain this repo for these purposes, nor to fix minor bugs. If you'd like to help out with this, please reach out.

Owner
Tim Pearce
AI researcher \\ Curr: Tsinghua Uni \\ Prev: Cambridge Uni
Tim Pearce
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
Data Consistency for Magnetic Resonance Imaging

Data Consistency for Magnetic Resonance Imaging Data Consistency (DC) is crucial for generalization in multi-modal MRI data and robustness in detectin

Dimitris Karkalousos 19 Dec 12, 2022
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

38 Dec 15, 2022
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport

Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport This GitHub page provides code for reproducing the results i

Andrew Zammit Mangion 1 Nov 08, 2021
Tensorboard for pytorch (and chainer, mxnet, numpy, ...)

tensorboardX Write TensorBoard events with simple function call. The current release (v2.3) is tested on anaconda3, with PyTorch 1.8.1 / torchvision 0

Tzu-Wei Huang 7.5k Dec 28, 2022
Classifying audio using Wavelet transform and deep learning

Audio Classification using Wavelet Transform and Deep Learning A step-by-step tutorial to classify audio signals using continuous wavelet transform (C

Aditya Dutt 17 Nov 29, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
HAT: Hierarchical Aggregation Transformers for Person Re-identification

HAT: Hierarchical Aggregation Transformers for Person Re-identification

11 Sep 05, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
Pytorch implementation of our paper accepted by NeurIPS 2021 -- Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) (Link) Overview Prerequisites Linu

Shaojie Li 34 Mar 31, 2022
Transformer based SAR image despeckling

Transformer based SAR image despeckling Using the code: The code is stable while using Python 3.6.13, CUDA =10.1 Clone this repository: git clone htt

27 Nov 13, 2022
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o

Samuel Lippl 0 Feb 05, 2022