NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Overview

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning

Tim Pearce, Jun Zhu
Offline RL workshop, NeurIPS 2021
Paper: https://arxiv.org/abs/2104.04258
Four minute introduction video: https://youtu.be/rnz3lmfSHv0
Gameplay examples: https://youtu.be/KTY7UhjIMm4

Contents

  1. Code Overview
  2. Trained Models
  3. Datasets
  4. Requirements
  5. License
  6. Disclaimer
  7. Maintenance

Code Overview

We briefly describe the workflow: dataset capture -> data processing -> training -> testing.

  1. Use dm_record_data.py to scrape data as a spectator, or dm_record_data_me_wasd.py to record when actively playing. This creates .npy files with screenshots and metadata.
  2. Run dm_infer_actions.py on .npy files from step 1 to infer actions from the metadata ('inverse dynamics model'). These are appended to the same .npy files. The visulations and stats produced by this script can be used to clean the data -- e.g. if the metadata from GSI and RAM disagrees for some variables, this is a sign that the data might be unreliable, if there are long periods of immobility (vel_static), this can mean you were tracking a motionless player. We suggest deleting such files.
  3. Run dm_pretrain_process.py on .npy files from step 2, this creates new .hdf5 files containing screenshots and onehot targets.
  4. (Optional.) Run tools_extract_metaadata.py to pull out metadata from the .npy files, saves as new .npy file.
  5. Run dm_train_model.py to train a model.
  6. Use tools_create_stateful.py to create a 'stateful' version of the model.
  7. Script dm_run_agent.py runs the model in the CSGO environment.

Brief overview of each script's purpose.

  • config.py : Contains key global hyperparameters and settings. Also several functions used across many scripts.
  • screen_input.py : Gets screenshot of the CSGO window, does some cropping and downsampling. Uses win32gui, win32ui, win32con, OpenCV.
  • key_output.py : Contains functions to send mouse clicks, set mouse position and key presses. Uses ctypes.
  • key_output.py : Contains functions to check for mouse location, mouse clicks and key presses. Uses win32api and ctypes.
  • meta_utils.py : Contains functions to set up RAM reading. Also contains a server class to connect to CSGO's GSI tool -- you should update MYTOKENHERE variable if setting up GSI.
  • dm_hazedumper_offsets.py : Contains offsets to read variables from RAM directly. They updated by the function in meta_utils.py.
  • dm_record_data.py : Records screenshots and metadata when in spectator mode. (Note these record scripts can be temperamental, and depend on hazedumper offsets being up to date.)
  • dm_record_data_me_wasd.py : Records screenshots and metadata when actively playing on local machine.
  • dm_infer_actions.py : For recorded dataset, infer actions from metadata and append to same file. Also stats indicative of data quality, and some functionality to rename files sequentially.
  • dm_pretrain_process.py : Takes .npy files from dm_infer_actions.py, and creates twin .hdf5 files ready for fast data loading with inputs and labels as expected by model. Also a function to strip image from .npy files.
  • dm_train_model.py : Trains the neural network model. Either from scratch or from a previous checkpoint.
  • dm_run_agent.py : Runs a trained model in CSGO. Option to collect metadata (eg score) using IS_GSI=True.
  • tools_dataset_inspect.py : Minimal code to open different datasets and accompanying metadata files.
  • tools_extract_metadata.py : Cuts out metadata (currvars, infer_a and helper_arr) from the original .npy files, and saves as new .npy without image. Aggregates 100 files together.
  • tools_dataset_stats.py : Collates metadata from the large online dataset, and produces summary stats and figures as in appendix A.
  • tools_create_stateful.py : This takes a trained 'non-stateful' model and saves a cloned 'stateful' version that should be used at test time (otherwise LSTM states reset between each forward pass). Required due to keras weirdness.
  • tools_map_coverage_analysis.py : Visualises map coverage of different agent and datasets, computes Earth mover's distance.
  • tools_view_save_egs.py : Opens and displays sequences of images .hdf5 and metadata .npy. Option of overlaying inferred actions. Option of saving as .png.
  • console_csgo_setup.txt : Console commands for setting up CSGO levels.

Trained Models

Four trained models are provided. There are 'non-stateful' (use during training) and 'stateful' (use at test time) versions of each.
Download link: https://drive.google.com/drive/folders/11n5Nxj6liSXKP6_vl-FjwfRHtWiSO6Ry?usp=sharing

  • ak47_sub_55k_drop_d4 : Pretrained on AK47 sequences only.
  • ak47_sub_55k_drop_d4_dmexpert_28 : Finetuned on expert deathmatch data.
  • ak47_sub_55k_drop_d4_aimexpertv2_60 : Finetuned on aim mode expert data.
  • July_remoterun7_g9_4k_n32_recipe_ton96__e14 : Pretrained on full dataset.

Datasets

For access to all datasets, please email the first author (tp424 at cam dot ac dot uk) with the title 'csgo dataset access' and a one sentence summary of how you intend to use the data. The email address you send from will be granted access to the cloud account. A brief description of dataset and directory structure is given below.

  • dataset_dm_scraped_dust2/hdf5_dm_july2021_*.hdf5

    • total files: 5500
    • approx size: 700 GB
    • map: dust2
    • gamemode: deathmatch
    • source: scraped from online servers
  • dataset_dm_expert_dust2/hdf5_dm_july2021_expert_*.hdf5

    • total files: 190
    • approx size: 24 GB
    • map: dust2
    • gamemode: deathmatch
    • source: manually created, clean actions
  • dataset_aim_expert/hdf5_aim_july2021_expert_*.hdf5

    • total files: 45
    • approx size: 6 GB
    • map: aim map
    • gamemode: aim mode
    • source: manually created, clean actions
  • dataset_dm_expert_othermaps/hdf5_dm_nuke_expert_*.hdf5

    • total files: 10
    • approx size: 1 GB
    • map: nuke
    • gamemode: deathmatch
    • source: manually created, clean actions
  • dataset_dm_expert_othermaps/hdf5_dm_nuke_expert_*.hdf5

    • total files: 10
    • approx size: 1 GB
    • map: nuke
    • gamemode: deathmatch
    • source: manually created, clean actions
  • dataset_dm_expert_othermaps/hdf5_dm_inferno_expert_*.hdf5

    • total files: 10
    • approx size: 1 GB
    • map: mirage
    • gamemode: deathmatch
    • source: manually created, clean actions
  • dataset_metadata/currvarsv2_dm_july2021_*_to_*.npy, currvarsv2_dm_july2021_expert_*_to_*.npy, currvarsv2_dm_mirage_expert_1_to_100.npy, currvarsv2_dm_inferno_expert_1_to_100.npy, currvarsv2_dm_nuke_expert_1_to_100.npy, currvarsv2_aim_july2021_expert_1_to_100.npy

    • total files: 55 + 2 + 1 + 1 + 1 + 1 = 61
    • approx size: 6 GB
    • map: as per filename
    • gamemode: as per filename
    • source: as per filename
  • location_trackings_backup/

    • total files: 305
    • approx size: 0.5 GB
    • map: dust2
    • gamemode: deathmatch
    • source: contains metadata used to compute map coverage analysis
      • currvarsv2_agentj22 is the agent trained over the full online dataset
      • currvarsv2_agentj22_dmexpert20 is previous model finetuned on the clean expert dust2 dataset
      • currvarsv2_bot_capture is medium difficulty built-in bot

Structure of .hdf5 files (image and action labels):

Each file contains an ordered sequence of 1000 frames (~1 minute) of play. This contains screenshots, as well as processed action labels. We chose .hdf5 format for fast dataloading, since a subset of frames can be accessed without opening the full file. The lookup keys are as follows (where i is frame number 0-999)

  • frame_i_x: is the image
  • frame_i_xaux: contains actions applied in previous timesteps, as well as health, ammo, and team. see dm_pretrain_preprocess.py for details, note this was not used in our final version of the agent
  • frame_i_y: contains target actions in flattened vector form; [keys_pressed_onehot, Lclicks_onehot, Rclicks_onehot, mouse_x_onehot, mouse_y_onehot]
  • frame_i_helperarr: in format [kill_flag, death_flag], each a binary variable, e.g. [1,0] means the player scored a kill and did not die in that timestep

Structure of .npy files (scraped metadata):

Each .npy file contains metadata corresponding to 100 .hdf5 files (as indicated by file name) They are dictionaries with keys of format: file_numi_frame_j for file number i, and frame number j in 0-999 The values are of format [curr_vars, infer_a, frame_i_helperarr] where,

  • curr_vars: contains a dictionary of the metadata originally scraped -- see dm_record_data.py for details
  • infer_a: are inferred actions, [keys_pressed,mouse_x,mouse_y,press_mouse_l,press_mouse_r], with mouse_x and y being continuous values and keys_pressed is in string format
  • frame_i_helperarr: is a repeat of the .hdf5 file

Requirements

Python and OS requirements

Below are the Python package versions used in development. The OS used for interacting with the game (testing and recording) was Windows, and for model training was Linux.

Python: '3.6.9' 
tensorflow: '2.3.0'
tensorflow.keras: '2.4.0'
h5py: '2.10.0'
numpy: '1.18.5'
OpenCV (cv2): '4.4.0'
scipy: '1.4.1'
ctypes: '1.1.0'
json: '2.0.9'

Hardware

Running the agent requires making forward passes through a large convolutional neural networks at 16 fps. If you do not have a CUDA enabled GPU, the agent's performance may degrade.

CSGO requirements

We collected the datasets and conducted testing over game versions 1.37.7.0 to 1.38.0.1. CSGO is continually updated and this may affect performance. The map dust2 received minor updates in 1.38.0.2. To test on the map from version 1.38.0.1, download here: https://steamcommunity.com/sharedfiles/filedetails/?id=2606435621. Future updates to gameplay may also degrade performance, consider rolling back the CSGO game version in this case.

Game State Integration (GSI) is used to pull out some metadata about the game. The dm_run_agent.py script is written so that it may be run without installing GSI (option IS_GSI). If you'd like to record data or extract metadata while running the agent, you'll need to set up GSI: https://www.reddit.com/r/GlobalOffensive/comments/cjhcpy/game_state_integration_a_very_large_and_indepth/ and update MYTOKENHERE in meta_utils.py.

Game settings (resolution, cross hair, mouse sensitivity etc) are documented in the paper, appendix E.

License

This repo can be used for personal projects and open-sourced research. We do not grant a license for its commercial use in any form. If in doubt, please contact us for permission.

Disclaimer

Whilst our code is not intended for cheating/hacking purposes, it's possible that Valve may detect the usage of some of these scripts in game (for example simulated mouse movements and RAM parsing) which in turn might lead to suspicion of cheating. We accept no liability for these sort of issues. Use it at your own risk!

Maintenance

This repo shares code used for academic research. It's not production ready. It's unlikely to be robust across operating systems, python versions, python packages, future CSGO updates etc. There's no plan to actively maintain this repo for these purposes, nor to fix minor bugs. If you'd like to help out with this, please reach out.

Owner
Tim Pearce
AI researcher \\ Curr: Tsinghua Uni \\ Prev: Cambridge Uni
Tim Pearce
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021
Efficient face emotion recognition in photos and videos

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien

Andrey Savchenko 239 Jan 04, 2023
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 08, 2023
Probabilistic Programming and Statistical Inference in PyTorch

PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The

Stefano Peluchetti 109 Nov 26, 2022
Detect roadway lanes using Python OpenCV for project during the 5th semester at DHBW Stuttgart for lecture in digital image processing.

Find Line Detection (Image Processing) Identifying lanes of the road is very common task that human driver performs. It's important to keep the vehicl

LMF 4 Jun 21, 2022
Collection of NLP model explanations and accompanying analysis tools

Thermostat is a large collection of NLP model explanations and accompanying analysis tools. Combines explainability methods from the captum library wi

126 Nov 22, 2022
End-to-end speech secognition toolkit

End-to-end speech secognition toolkit This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9). This is the official implementation of paper:

Jinchuan Tian 147 Dec 28, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

SCALoss PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022). Introduction IoU-based lo

TuZheng 20 Sep 07, 2022
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Nidhal Baccouri 3k Jan 05, 2023
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
A PyTorch implementation of DenseNet.

A PyTorch Implementation of DenseNet This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Conv

Brandon Amos 771 Dec 15, 2022
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202

EPFL LTS4 19 Dec 10, 2021