3D cascade RCNN for object detection on point cloud

Overview

3D Cascade RCNN

This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds.

We designed a 3D object detection model on point clouds by:

  • Presenting a simple yet effective 3D cascade architecture
  • Analyzing the sparsity of the point clouds and using point completeness score to re-weighting training samples. Following is detection results on Waymo Open Dataset.

Results on KITTI

Easy Car Moderate Car Hard Car
AP 11 90.05 86.02 79.27
AP 40 93.20 86.19 83.48

Results on Waymo

Overall Vehicle 0-30m Vehicle 30-50m Vehicle 50m-Inf Vehicle
LEVEL_1 mAP 76.27 92.66 74.99 54.49
LEVEL_2 mAP 67.12 91.95 68.96 41.82

Installation

  1. Requirements. The code is tested on the following environment:
  • Ubuntu 16.04 with 4 V100 GPUs
  • Python 3.7
  • Pytorch 1.7
  • CUDA 10.1
  • spconv 1.2.1
  1. Build extensions
python setup.py develop

Getting Started

Prepare for the data.

Please download the official KITTI dataset and generate data infos by following command:

python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/kitti_dataset.yaml

The folder should be like:

data
├── kitti
│   │── ImageSets
│   │── training
│   │   ├──calib & velodyne & label_2 & image_2
│   │── testing
│   │   ├──calib & velodyne & image_2
|   |── kitti_dbinfos_train.pkl
|   |── kitti_infos_train.pkl
|   |── kitti_infos_val.pkl

Training and evaluation.

The configuration file is in tools/cfgs/3d_cascade_rcnn.yaml, and the training scripts is in tools/scripts.

cd tools
sh scripts/3d-cascade-rcnn.sh

Test a pre-trained model

The pre-trained KITTI model is at: model. Run with:

cd tools
sh scripts/3d-cascade-rcnn_test.sh

The evaluation results should be like:

2021-08-10 14:06:14,608   INFO  Car [email protected], 0.70, 0.70:
bbox AP:97.9644, 90.1199, 89.7076
bev  AP:90.6405, 89.0829, 88.4391
3d   AP:90.0468, 86.0168, 79.2661
aos  AP:97.91, 90.00, 89.48
Car [email protected], 0.70, 0.70:
bbox AP:99.1663, 95.8055, 93.3149
bev  AP:96.3107, 92.4128, 89.9473
3d   AP:93.1961, 86.1857, 83.4783
aos  AP:99.13, 95.65, 93.03
Car [email protected], 0.50, 0.50:
bbox AP:97.9644, 90.1199, 89.7076
bev  AP:98.0539, 97.1877, 89.7716
3d   AP:97.9921, 90.1001, 89.7393
aos  AP:97.91, 90.00, 89.48
Car [email protected], 0.50, 0.50:
bbox AP:99.1663, 95.8055, 93.3149
bev  AP:99.1943, 97.8180, 95.5420
3d   AP:99.1717, 95.8046, 95.4500
aos  AP:99.13, 95.65, 93.03

Acknowledge

The code is built on OpenPCDet and Voxel R-CNN.

Owner
Qi Cai
Qi Cai
Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

14 Nov 06, 2022
This repository contains datasets and baselines for benchmarking Chinese text recognition.

Benchmarking-Chinese-Text-Recognition This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corres

FudanVI Lab 254 Dec 30, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
Self-describing JSON-RPC services made easy

ReflectRPC Self-describing JSON-RPC services made easy Contents What is ReflectRPC? Installation Features Datatypes Custom Datatypes Returning Errors

Andreas Heck 31 Jul 16, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
Implementation of PyTorch-based multi-task pre-trained models

mtdp Library containing implementation related to the research paper "Multi-task pre-training of deep neural networks for digital pathology" (Mormont

Romain Mormont 27 Oct 14, 2022
Repository for code and dataset for our EMNLP 2021 paper - “So You Think You’re Funny?”: Rating the Humour Quotient in Standup Comedy.

AI-OpenMic Dataset The dataset is available for download via the follwing link. Repository for code and dataset for our EMNLP 2021 paper - “So You Thi

6 Oct 26, 2022
Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing Image morphing without reference points by applying warp maps and optimizing over them. Differentiable Morphing is machine lea

Alex K 380 Dec 19, 2022
Implementation of OpenAI paper with Simple Noise Scale on Fastai V2

README Implementation of OpenAI paper "An Empirical Model of Large-Batch Training" for Fastai V2. The code is based on the batch size finder implement

13 Dec 10, 2021
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
A Model for Natural Language Attack on Text Classification and Inference

TextFooler A Model for Natural Language Attack on Text Classification and Inference This is the source code for the paper: Jin, Di, et al. "Is BERT Re

Di Jin 418 Dec 16, 2022
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
An implementation of the 1. Parallel, 2. Streaming, 3. Randomized SVD using MPI4Py

PYPARSVD This implementation allows for a singular value decomposition which is: Distributed using MPI4Py Streaming - data can be shown in batches to

Romit Maulik 44 Dec 31, 2022
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 31, 2022
This repository is for Competition for ML_data class

This repository is for Competition for ML_data class. Based on mmsegmentatoin,mainly using swin transformer to completed the competition.

jianlong 2 Oct 23, 2022
Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

Christian Steinmetz 94 Dec 29, 2022
LaBERT - A length-controllable and non-autoregressive image captioning model.

Length-Controllable Image Captioning (ECCV2020) This repo provides the implemetation of the paper Length-Controllable Image Captioning. Install conda

bearcatt 53 Nov 13, 2022