Arch-Net: Model Distillation for Architecture Agnostic Model Deployment

Related tags

Deep LearningArch-Net
Overview

Arch-Net: Model Distillation for Architecture Agnostic Model Deployment

The official implementation of Arch-Net: Model Distillation for Architecture Agnostic Model Deployment

Introduction

TL;DR Arch-Net is a family of neural networks made up of simple and efficient operators. When a Arch-Net is produced, less common network constructs, like Layer Normalization and Embedding Layers, are eliminated in a progressive manner through label-free Blockwise Model Distillation, while performing sub-eight bit quantization at the same time to maximize performance. For the classification task, only 30k unlabeled images randomly sampled from ImageNet dataset is needed.

Main Results

ImageNet Classification

Model Bit Width Top1 Top5
Arch-Net_Resnet18 32w32a 69.76 89.08
Arch-Net_Resnet18 2w4a 68.77 88.66
Arch-Net_Resnet34 32w32a 73.30 91.42
Arch-Net_Resnet34 2w4a 72.40 91.01
Arch-Net_Resnet50 32w32a 76.13 92.86
Arch-Net_Resnet50 2w4a 74.56 92.39
Arch-Net_MobilenetV1 32w32a 68.79 88.68
Arch-Net_MobilenetV1 2w4a 67.29 88.07
Arch-Net_MobilenetV2 32w32a 71.88 90.29
Arch-Net_MobilenetV2 2w4a 69.09 89.13

Multi30k Machine Translation

Model translation direction Bit Width BLEU
Transformer English to Gemany 32w32a 32.44
Transformer English to Gemany 2w4a 33.75
Transformer English to Gemany 4w4a 34.35
Transformer English to Gemany 8w8a 36.44
Transformer Gemany to English 32w32a 30.32
Transformer Gemany to English 2w4a 32.50
Transformer Gemany to English 4w4a 34.34
Transformer Gemany to English 8w8a 34.05

Dependencies

python == 3.6

refer to requirements.txt for more details

Data Preparation

Download ImageNet and multi30k data(google drive or BaiduYun, code: 8brd) and put them in ./arch-net/data/ as follow:

./data/
├── imagenet
│   ├── train
│   ├── val
├── multi30k

Download teacher models at google drive or BaiduYun(code: 57ew) and put them in ./arch-net/models/teacher/pretrained_models/

Get Started

ImageNet Classification (take archnet_resnet18 as an example)

train and evaluate

cd ./train_imagenet

python3 -m torch.distributed.launch --nproc_per_node=8 train_archnet_resnet18.py  -j 8 --weight-bit 2 --feature-bit 4 --lr 0.001 --num_gpus 8 --sync-bn

evaluate if you already have the trained models

python3 -m torch.distributed.launch --nproc_per_node=8 train_archnet_resnet18.py  -j 8 --weight-bit 2 --feature-bit 4 --lr 0.001 --num_gpus 8 --sync-bn --evaluate

Machine Translation

train a arch-net_transformer of 2w4a

cd ./train_transformer

python3 train_archnet_transformer.py --translate_direction en2de --teacher_model_path ../models/teacher/pretrained_models/transformer_en_de.chkpt --data_pkl ../data/multi30k/m30k_ende_shr.pkl --batch_size 48 --final_epochs 50 --weight_bit 2 --feature_bit 4 --lr 1e-3 --weight_decay 1e-6 --label_smoothing
  • for arch-net_transformer of 8w8a, use the lr of 1e-3 and the weight decay of 1e-4

evaluate

cd ./evaluate

python3 translate.py --data_pkl ./data/multi30k/m30k_ende_shr.pkl --model path_to_the_outptu_directory/model_max_acc.chkpt
  • to get the BLEU of the evaluated results, go to this website, and then upload 'predictions.txt' in the output directory and the 'gt_en.txt' or 'gt_de.txt' in ./arch-net/data_gt/multi30k/

Citation

If you find this project useful for your research, please consider citing the paper.

@misc{xu2021archnet,
      title={Arch-Net: Model Distillation for Architecture Agnostic Model Deployment}, 
      author={Weixin Xu and Zipeng Feng and Shuangkang Fang and Song Yuan and Yi Yang and Shuchang Zhou},
      year={2021},
      eprint={2111.01135},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Acknowledgements

attention-is-all-you-need-pytorch

LSQuantization

pytorch-mobilenet-v1

Contact

If you have any questions, feel free to open an issue or contact us at [email protected].

Owner
MEGVII Research
Power Human with AI. 持续创新拓展认知边界 非凡科技成就产品价值
MEGVII Research
PyMove is a Python library to simplify queries and visualization of trajectories and other spatial-temporal data

Use PyMove and go much further Information Package Status License Python Version Platforms Build Status PyPi version PyPi Downloads Conda version Cond

Insight Data Science Lab 64 Nov 15, 2022
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration Introduction The repository contains the source code and pre-tr

Intelligent Sensing, Perception and Computing Group 55 Dec 14, 2022
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
Mask-invariant Face Recognition through Template-level Knowledge Distillation

Mask-invariant Face Recognition through Template-level Knowledge Distillation This is the official repository of "Mask-invariant Face Recognition thro

Fadi Boutros 35 Dec 06, 2022
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022
Code Repo for the ACL21 paper "Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning"

Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning This is the Github repository of our paper, "Common S

INK Lab @ USC 19 Nov 30, 2022
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
Matplotlib Image labeller for classifying images

mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more

Ian Hunt-Isaak 5 Sep 24, 2022
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
This package implements THOR: Transformer with Stochastic Experts.

THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation

Microsoft 45 Nov 22, 2022
Computational inteligence project on faces in the wild dataset

Table of Contents The general idea How these scripts work? Loading data Needed modules and global variables Parsing the arrays in dataset Extracting a

tooraj taraz 4 Oct 21, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Vision Transformer with Progressive Sampling This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

yuexy 123 Jan 01, 2023
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
My 1st place solution at Kaggle Hotel-ID 2021

1st place solution at Kaggle Hotel-ID My 1st place solution at Kaggle Hotel-ID to Combat Human Trafficking 2021. https://www.kaggle.com/c/hotel-id-202

Kohei Ozaki 18 Aug 19, 2022