Arch-Net: Model Distillation for Architecture Agnostic Model Deployment

Related tags

Deep LearningArch-Net
Overview

Arch-Net: Model Distillation for Architecture Agnostic Model Deployment

The official implementation of Arch-Net: Model Distillation for Architecture Agnostic Model Deployment

Introduction

TL;DR Arch-Net is a family of neural networks made up of simple and efficient operators. When a Arch-Net is produced, less common network constructs, like Layer Normalization and Embedding Layers, are eliminated in a progressive manner through label-free Blockwise Model Distillation, while performing sub-eight bit quantization at the same time to maximize performance. For the classification task, only 30k unlabeled images randomly sampled from ImageNet dataset is needed.

Main Results

ImageNet Classification

Model Bit Width Top1 Top5
Arch-Net_Resnet18 32w32a 69.76 89.08
Arch-Net_Resnet18 2w4a 68.77 88.66
Arch-Net_Resnet34 32w32a 73.30 91.42
Arch-Net_Resnet34 2w4a 72.40 91.01
Arch-Net_Resnet50 32w32a 76.13 92.86
Arch-Net_Resnet50 2w4a 74.56 92.39
Arch-Net_MobilenetV1 32w32a 68.79 88.68
Arch-Net_MobilenetV1 2w4a 67.29 88.07
Arch-Net_MobilenetV2 32w32a 71.88 90.29
Arch-Net_MobilenetV2 2w4a 69.09 89.13

Multi30k Machine Translation

Model translation direction Bit Width BLEU
Transformer English to Gemany 32w32a 32.44
Transformer English to Gemany 2w4a 33.75
Transformer English to Gemany 4w4a 34.35
Transformer English to Gemany 8w8a 36.44
Transformer Gemany to English 32w32a 30.32
Transformer Gemany to English 2w4a 32.50
Transformer Gemany to English 4w4a 34.34
Transformer Gemany to English 8w8a 34.05

Dependencies

python == 3.6

refer to requirements.txt for more details

Data Preparation

Download ImageNet and multi30k data(google drive or BaiduYun, code: 8brd) and put them in ./arch-net/data/ as follow:

./data/
├── imagenet
│   ├── train
│   ├── val
├── multi30k

Download teacher models at google drive or BaiduYun(code: 57ew) and put them in ./arch-net/models/teacher/pretrained_models/

Get Started

ImageNet Classification (take archnet_resnet18 as an example)

train and evaluate

cd ./train_imagenet

python3 -m torch.distributed.launch --nproc_per_node=8 train_archnet_resnet18.py  -j 8 --weight-bit 2 --feature-bit 4 --lr 0.001 --num_gpus 8 --sync-bn

evaluate if you already have the trained models

python3 -m torch.distributed.launch --nproc_per_node=8 train_archnet_resnet18.py  -j 8 --weight-bit 2 --feature-bit 4 --lr 0.001 --num_gpus 8 --sync-bn --evaluate

Machine Translation

train a arch-net_transformer of 2w4a

cd ./train_transformer

python3 train_archnet_transformer.py --translate_direction en2de --teacher_model_path ../models/teacher/pretrained_models/transformer_en_de.chkpt --data_pkl ../data/multi30k/m30k_ende_shr.pkl --batch_size 48 --final_epochs 50 --weight_bit 2 --feature_bit 4 --lr 1e-3 --weight_decay 1e-6 --label_smoothing
  • for arch-net_transformer of 8w8a, use the lr of 1e-3 and the weight decay of 1e-4

evaluate

cd ./evaluate

python3 translate.py --data_pkl ./data/multi30k/m30k_ende_shr.pkl --model path_to_the_outptu_directory/model_max_acc.chkpt
  • to get the BLEU of the evaluated results, go to this website, and then upload 'predictions.txt' in the output directory and the 'gt_en.txt' or 'gt_de.txt' in ./arch-net/data_gt/multi30k/

Citation

If you find this project useful for your research, please consider citing the paper.

@misc{xu2021archnet,
      title={Arch-Net: Model Distillation for Architecture Agnostic Model Deployment}, 
      author={Weixin Xu and Zipeng Feng and Shuangkang Fang and Song Yuan and Yi Yang and Shuchang Zhou},
      year={2021},
      eprint={2111.01135},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Acknowledgements

attention-is-all-you-need-pytorch

LSQuantization

pytorch-mobilenet-v1

Contact

If you have any questions, feel free to open an issue or contact us at [email protected].

Owner
MEGVII Research
Power Human with AI. 持续创新拓展认知边界 非凡科技成就产品价值
MEGVII Research
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
Privacy-Preserving Portrait Matting [ACM MM-21]

Privacy-Preserving Portrait Matting [ACM MM-21] This is the official repository of the paper Privacy-Preserving Portrait Matting. Jizhizi Li∗, Sihan M

Jizhizi_Li 212 Dec 27, 2022
Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
Implementation of the SUMO (Slim U-Net trained on MODA) model

SUMO - Slim U-Net trained on MODA Implementation of the SUMO (Slim U-Net trained on MODA) model as described in: TODO: add reference to paper once ava

6 Nov 19, 2022
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
Codes of the paper Deformable Butterfly: A Highly Structured and Sparse Linear Transform.

Deformable Butterfly: A Highly Structured and Sparse Linear Transform DeBut Advantages DeBut generalizes the square power of two butterfly factor matr

Rui LIN 8 Jun 10, 2022
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui

Yi Wei 369 Dec 24, 2022
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)

machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be

Marko Njegomir 7 Dec 14, 2022
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
Cross-platform CLI tool to generate your Github profile's stats and summary.

ghs Cross-platform CLI tool to generate your Github profile's stats and summary. Preview Hop on to examples for other usecases. Jump to: Installation

HackerRank 134 Dec 20, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022