Learning Neural Painters Fast! using PyTorch and Fast.ai

Overview

The Joy of Neural Painting

Learning Neural Painters Fast! using PyTorch and Fast.ai

The Joy of Neural Painting

I am sure you know Bob Ross and his program The Joy of Painting where he taught thousands of viewers how to paint beautiful landscapes with a simple and fun way, combining colors and brushstrokes, to achieve great results very quickly. Do you remember him teaching how to paint a pixel at the time? of course not! 

However, most of the current generative AI Art methods are still centered to teach machines how to 'paint' at the pixel-level in order to achieve or mimic some painting style, e.g., GANs-based approaches and style transfer. This might be effective, but not very intuitive, specially when explaining this process to artists, who are familiar with colors and brushstrokes.

At Libre AI, we have started a Creative AI initiative with the goal to make more accessible the advances of AI to groups of artists who do not necessarily have a tech background. We want to explore how the creative process is enriched by the interaction between creative people and creative machines.

As first step, we need to teach a machine how to paint. It should learn to paint as a human would do it: using brushstrokes and combining colors on a canvas. We researched the state-of-the-art and despite the great works, there was not really a single paper that satisfied our requirements, until we found Neural Painters: A Learned Differentiable Constraint for Generating Brushstroke Paintings by Reiichiro Nakano [1]. This finding was quite refreshing.

Tinkering with Neural Painters

Neural Painters [1] are a class of models that can be seen as a fully differentiable simulation of a particular non-differentiable painting program, in other words, the machine "paints" by successively generating brushstrokes (i.e., actions that defines a brushstrokes) and applying them on a canvas, as an artist would do.

The code available to reproduce the experiments is offered by the author in a series of Google's Colaboratory notebooks available in this Github repo and the dataset used is available in Kaggle. The implementation uses TensorFlow, which is great in terms of performance, but let's face it, it is not great fun to digest TensorFlow's code (specially without Keras ;) ).

Teaching machines is the best way to learn Machine Learning – E. D. A.

We played around with the notebooks provided, they were extremely useful to understand the paper and to generate nice sample paintings, but we decided that in order to really learn and master Neural Painters, we needed to experiment and reproduce the results of the paper with our own implementation. To this end, we decided to go with PyTorch and fast.ai as deep learning frameworks instead of TensorFlow as the paper's reference implementation, to do some tinkering and in the process, hopefully, come with a more accessible piece of code.

Learning Neural Painters Faster

GANs are great generative models but they are known to be notoriously difficult to train, specially due to requiring a large amount of data, and therefore, needing large computational power on GPUs. They require a lot of time to train and are sensitive to small hyperparameter variations.  We indeed tried first a pure adversarial training following the paper, but although we obtained some decent results with our implementation, in terms of brushstrokes quality, it took a day or two to get there with a single GPU using a Colaboratory notebook and the full dataset

To overcome these known GANs limitations and to speed up the Neural Painter training process, we leveraged the power of Transfer Learning

Transfer learning is a very useful technique in Machine Learning, e.g., the ImageNet models trained as classifiers, are largely used as powerful image feature extractors, in NLP, word embeddings, learned unsupervised or with minimal supervision (e.g., trying to predict words in the same context), have been very useful as representations of words in more complex language models. In Recommender Systems, representations of items (e.g., book, movie, song) or users can be learned via Collaborative Filtering and then use them not only for personalized ranking, but also for adaptive user interfaces. The fundamental idea, is to learn a model or feature representation on a task, and then transfer that knowledge to another related task, without the need to start from scratch, and only do some fine-tuning to adapt the model or representation parameters on that task.

More precisely, since GANs main components are the Generator and Critic the idea is to pre-train them independently, that is in a non-adversarial manner, and do transfer learning by hooking them together after pre-training and proceed with the adversarial training, i.e., GAN mode. This process has shown to produce remarkable results [2] and is the one we follow here.

The main steps are as described as follows:

  1. Pre-train the Generator with a non-adversarial loss, e.g., using a feature loss (also known as perceptual loss). (01_neural_painter_x_training_Generator_Non_Adversarial.ipynb)

  2. Freeze the pre-trained Generator weights

  3. Pre-train the Critic as a Binary Classifier (i.e., non-adversarially) using the pre-trained Generator (in evaluation mode with frozen model weights) to generate fake brushstrokes. That is, the Critic should learn to discriminate between real images and the generated ones. This step uses a standard binary classification loss, i.e., Binary Cross Entropy, not a GAN loss. (02_neural_painter_x_training_Critic_Non_Adversarial.ipynb)

  4. Transfer learning for adversarial training (GAN mode): continue the Generator and Critic training in a GAN setting. Faster! (03_neural_painter_x_training_GAN_mode.ipynb)

Let's Paint: 04_neural_painter_x_painting.ipynb

More in detail:

(1) Pre-train the Generator with a Non-Adversarial Loss

The training set consists of labeled examples where the input corresponds to an action vector and the corresponding brushstroke image to the target.  The input action vectors go through the Generator, which consists of a fully-connected layer (to increase the input dimensions) and of a Deep Convolutional Neural Network connected to it. The output of the Generator is an image of a brushstroke. The loss computed between the images is the feature loss introduced in [3] (also known as perceptual loss [4]). The process is depicted in Figure 1.

Figure 1. Pre-train the Generator using a (non-adversarial) feature loss.

(2) Freeze the pre-trained Generator 

After pre-training the Generator using the non-adversarial loss, the brushstrokes look like the ones depicted in Figure 2. A set of brushstrokes images is generated that will help us pre-train the Critic in the next step.

Figure 2 . Sample Brushstrokes from the Generator Pre-trained with a Non-Adversarial Loss.

(3) Pre-train the Critic as a Binary Classifier.

We train the Critic as binary classifier (Figure 3), that is, the Critic is pre-trained on the task of recognizing true vs generated brushstrokes images (Step (2)). We use is the Binary Cross Entropy as binary loss for this step.

Figure 3 . Pre-train the Critic as a Binary Classifier.

(4) Transfer Learning for Adversarial Training (GAN mode)

Finally, we continue the Generator and Critic training in a GAN setting as shown in Figure 4. This final step is much faster that training the Generator and Critic from scratch as a GAN. 

Figure 4 . Transfer Learning: Continue the Generator and Critic training in a GAN setting. Faster.

One can observe from Figure 2 that the pre-trained Generator is doing a decent job learning brushstrokes. However, there are still certain imperfections when compared to the true strokes in the dataset. 

Figure 5 shows the output of the Generator after completing a single epoch of GAN training, i.e., after transferring the knowledge acquired in the pre-training phase. We can observe how the brushstrokes are more refined and, although slightly different to the true brushstrokes, they have interesting textures, which makes them very appealing for brushstrokes paintings.

Figure 5 . Sample Brushstrokes from the Generator after Adversarial Training (GAN mode).

From Brushstrokes to Paintings 

Once the Generator training process is completed, we have a machine that is able to translate vectors of actions to brushstrokes, but how do we teach the machine to paint like a Bob Ross' apprentice? 

Given an input image for inspiration, e.g., a photo of a beautiful landscape, the machine should be able to create a brushstroke painting for that image. To achieve this, we will freeze the Generator model weights and learn a set of action vectors that when input to the Generator will produce brushstrokes, that once combined, will create such painting, which should look similar to the given image, but of course as a painting :)

The Neural Painters paper [1] introduces a process called Intrinsic Style Transfer, similar in spirit to Neural Style Transfer [6] but which does not require a style image. Intuitively, the features of the content input image and the one produced by the Neural Painter should be similar. The image features are extracted using a VGG16 [7] network as a feature extractor, denoted as CNN in Figure 6, which depicts the whole process. 

Figure 6. Painting with Neural Painters using Intrinsic Style Transfer.

Note that the optimization process is targeted to learn the tensor of actions, while the remaining model weights are not changed, that is, the ones of the Neural Painter and CNN models. We use the same Feature Loss as before [3].

Notes

  • For blending the brushstrokes, we follow a linear blending strategy to combine the generated strokes in a canvas, this process is described in detail in a very nice post titled Teaching Agents to Paint Inside Their Own Dreams also by Reiichiro Nakano [5]. We are currently exploring an alternative process that uses the alpha channel for blending.

Acknowledgements

We would like to thank Reiichiro Nakano for helping us clarifying doubts during the implementation of our Neural Painters and for his supportive and encouraging comments and feedback. Thanks a lot Reiichiro! @reiinakano.

References

[1] Neural Painters: A Learned Differentiable Constraint for Generating Brushstroke Paintings. Reiichiro Nakano  arXiv preprint arXiv:1904.08410, 2019. Github repo.

[2] Decrappification, DeOldification, and Super Resolution. Jason Antic (Deoldify), Jeremy Howard (fast.ai), and Uri Manor (Salk Institute) https://www.fast.ai/2019/05/03/decrappify/ , 2019.

[3] Fast.ai MOOC Lesson 7: Resnets from scratch; U-net; Generative (adversarial) networks. https://course.fast.ai/videos/?lesson=7 ; Notebook: https://nbviewer.jupyter.org/github/fastai/course-v3/blob/master/nbs/dl1/lesson7-superres.ipynb [Accessed on: 2019–08]

[4] Perceptual Losses for Real-Time Style Transfer and Super-Resolution. Justin Johnson, Alexandre Alahi, Li Fei-Fei https://arxiv.org/abs/1603.08155, 2016

[5] Teaching Agents to Paint Inside Their Own Dreams. Reiichiro Nakano.  https://reiinakano.com/2019/01/27/world-painters.html, 2019

[6] A Neural Algorithm of Artistic Style. Leon A. Gatys, Alexander S. Ecker, Matthias Bethge. https://arxiv.org/abs/1508.06576, 2015

[7] Very Deep Convolutional Networks for Large-Scale Image Recognition. Karen Simonyan, Andrew Zisserman. https://arxiv.org/abs/1409.1556, 2014


Owner
Libre AI
Libre AI
DCGAN LSGAN WGAN-GP DRAGAN PyTorch

Recommendation Our GAN based work for facial attribute editing - AttGAN. News 8 April 2019: We re-implement these GANs by Tensorflow 2! The old versio

Zhenliang He 408 Nov 30, 2022
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022
🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.

🌎 JSONClasses JSONClasses is a declarative data flow pipeline and data graph framework. Official Website: https://www.jsonclasses.com Official Docume

Fillmula Inc. 53 Dec 09, 2022
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning

Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning This is the official repository of "Camera Distortion-

Hanbyel Cho 12 Oct 06, 2022
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
The hippynn python package - a modular library for atomistic machine learning with pytorch.

The hippynn python package - a modular library for atomistic machine learning with pytorch. We aim to provide a powerful library for the training of a

Los Alamos National Laboratory 37 Dec 29, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
TargetAllDomainObjects - A python wrapper to run a command on against all users/computers/DCs of a Windows Domain

TargetAllDomainObjects A python wrapper to run a command on against all users/co

Podalirius 19 Dec 13, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
OpenVisionAPI server

🚀 Quick start An instance of ova-server is free and publicly available here: https://api.openvisionapi.com Checkout ova-client for a quick demo. Inst

Open Vision API 93 Nov 24, 2022
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022
An educational resource to help anyone learn deep reinforcement learning.

Status: Maintenance (expect bug fixes and minor updates) Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that ma

OpenAI 7.6k Jan 09, 2023
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022