A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

Related tags

Deep LearningADClust
Overview

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

Overview

Clustering analysis is widely utilized in single-cell RNA-sequencing (scRNA-seq) data to discover cell heterogeneity and cell states. While several clustering methods have been developed for scRNA-seq analysis, the clustering results of these methods heavily rely on the number of clusters as prior information. How-ever, it is not easy to know the exact number of cell types, and experienced determination is not always accurate. Here, we have developed ADClust, an auto deep embedding clustering method for scRNA-seq data, which can simultaneously and accurately estimate the number of clusters and cluster cells. Specifically, ADClust first obtain low-dimensional representation through pre-trained autoencoder, and use the representations to cluster cells into micro-clusters. Then, the micro-clusters are compared in be-tween by Dip-test, a statistical test for unimodality, and similar micro-clusters are merged through a designed clustering loss func-tion. This process continues until convergence. By tested on elev-en real scRNA-seq datasets, ADClust outperformed existing meth-ods in terms of both clustering performance and the ability to es-timate the number of clusters. More importantly, our model pro-vides high speed and scalability on large datasets.

(Variational) gcn

Requirements

Please ensure that all the libraries below are successfully installed:

  • torch 1.7.1
  • numpy 1.19.2
  • scipy 1.7.3
  • scanpy 1.8.1

Installation

You need to compile the dip.c file using a C compiler, and add the path of generated library dip.so into LD_LIBRARY_PATH. For this following commands need to be executed:


gcc -fPIC -shared -o dip.so dip.c

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./dip.so

Run ADClust

Run on the normalized example data.


python ADClust.py --name Baron_human_normalized

output

The clustering cell labels will be stored in the dir ourtput /dataname_pred.csv.

scRNA-seq Datasets

All datasets can be downloaded at Here

All datasets will be downloaded to: ADClust /data/

Citation

Please cite our paper:


@article{zengys,
  title={A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data},
  author={Yuansong Zeng, Zhuoyi Wei, Fengqi, Zhong,  Zixiang Pan, Yutong Lu, Yuedong Yang},
  journal={biorxiv},
  year={2021}
 publisher={Cold Spring Harbor Laboratory}
}

Owner
AI-Biomed @NSCC-gz
AI-Biomed @NSCC-gz
Code for paper "Learning to Reweight Examples for Robust Deep Learning"

learning-to-reweight-examples Code for paper Learning to Reweight Examples for Robust Deep Learning. [arxiv] Environment We tested the code on tensorf

Uber Research 261 Jan 01, 2023
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
A Simple Long-Tailed Rocognition Baseline via Vision-Language Model

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

Teli Ma 4 Jan 20, 2022
This program automatically runs Python code copied in clipboard

CopyRun This program runs Python code which is copied in clipboard WARNING!! USE AT YOUR OWN RISK! NO GUARANTIES IF ANYTHING GETS BROKEN. DO NOT COPY

vertinski 4 Sep 10, 2021
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o

Res2Net Applications 928 Dec 29, 2022
PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

Out-of-distribution Generalization Investigation on Vision Transformers This repository contains PyTorch evaluation code for Delving Deep into the Gen

Chongzhi Zhang 72 Dec 13, 2022
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Hengrui Zhang 44 Nov 27, 2022
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Big Vision This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and

Google Research 701 Jan 03, 2023