Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Overview

Code Artifacts

Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Demos

Testbed

Real-world Environment

Virtual Environment (Unity)

Sim2Real and Real2Sim translations by CycleGAN

Self-driving cars

The same DNN model deployed on a real-world electric vehicle and in a virtual simulated world

Visual Odometry

Real-time XTE predictions in the real-world with visual odometry

Corruptions (left) and Adversarial Examples (right)

Requisites

Python3, git 64 bit, miniconda 3.7 64 bit. To modify the simulator (optional): Unity 2019.3.0f1

Software setup: We adopted the PyCharm Professional 2020.3, a Python IDE by JetBrains, and Python 3.7.

Hardware setup: Training the DNN models (self-driving cars) and CycleGAN on our datasets is computationally expensive. Therefore, we recommend using a machine with a GPU. In our setting, we ran our experiments on a machine equipped with a AMD Ryzen 5 processor, 8 GB of memory, and an NVIDIA GPU GeForce RTX 2060 with 6 GB of dedicated memory. Our trained models are available here.

Donkey Car

We used Donkey Car v. 3.1.5. Make sure you correctly install the donkey car software, the necessary simulator software and our simulator (macOS only).

* git clone https://github.com/autorope/donkeycar.git
* git checkout a91f88d
* conda env remove -n donkey
* conda env create -f install/envs/mac.yml
* conda activate donkey
* pip install -e .\[pc\]

XTE Predictor for real-world driving images

Data collection for a XTE predictor must be collected manually (or our datasets can be used). Alternatively, data can be collected by:

  1. Launching the Simulator.
  2. Selecting a log directory by clicking the 'log dir' button
  3. Selecting a preferred resolution (default is 320x240)
  4. Launching the Sanddbox Track scene and drive the car with the 'Joystick/Keyboard w Rec' button
  5. Driving the car

This will generate a dataset of simulated images and respective XTEs (labels). The simulated images have then to be converted using a CycleGAN network trained to do sim2real translation.

Once the dataset of converted images and XTEs is collected, use the train_xte_predictor.py notebook to train the xte predictor.

Self-Driving Cars

Manual driving

Connection

Donkey Car needs a static IP so that we can connect onto the car

ssh jetsonnano@
   
    
Pwd: 
    

    
   

Joystick Pairing

ds4drv &

PS4 controller: press PS + share and hold; starts blinking and pairing If [error][bluetooth] Unable to connect to detected device: Failed to set operational mode: [Errno 104] Connection reset by peer Try again When LED is green, connection is ok

python manage.py drive —js  // does not open web UI
python manage.py drive  // does open web UI for settiong a maximum throttle value

X -> E-Stop (negative acceleration) Share -> change the mode [user, local, local_angle]

Enjoy!

press PS and hold for 10 s to turn it off

Training

python train.py --model 
   
    .h5 --tub 
     --type 
     
       --aug

     
   

Testing (nominal conditions)

For autonomus driving:

python manage.py drive --model [models/
   
    ]

   

Go to: http://10.21.13.35:8887/drive Select “Local Pilot (d)”

Testing (corrupted conditions)

python manage.py drive --model [models/
   
    ] [--corruption=
    
     ] [--severity=
     
      ] [--delay=
      
       ]

      
     
    
   

Testing (adversarial conditions)

python manage.py drive --model [models/
   
    ] [--useadversarial] [--advimage=
    
     ]  [--severity=
     
      ] [--delay=
      
       ]

      
     
    
   
Owner
Andrea Stocco
PostDoctoral researcher in Software Engineering. My interests concern devising techniques for testing web- and AI-based software systems.
Andrea Stocco
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023
Backend code to use MCPI's python API to make infinite worlds with custom generation

inf-mcpi Backend code to use MCPI's python API to make infinite worlds with custom generation Does not save player-placed blocks! Generation is still

5 Oct 04, 2022
Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Wang Yijun 109 Nov 29, 2022
“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)

Data Augmentation for Cross-Domain Named Entity Recognition Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio This repository

<a href=[email protected]"> 18 Sep 10, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Yijia Weng 96 Dec 07, 2022
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
Pytorch implementation of

EfficientTTS Unofficial Pytorch implementation of "EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture"(arXiv). Disclaimer: Somebo

Liu Songxiang 109 Nov 16, 2022
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023