Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

Related tags

Deep Learninglasr
Overview

LASR

Installation

Build with conda

conda env create -f lasr.yml
conda activate lasr
# install softras
cd third_party/softras; python setup.py install; cd -;
# install manifold remeshing
git clone --recursive -j8 git://github.com/hjwdzh/Manifold; cd Manifold; mkdir build; cd build; cmake .. -DCMAKE_BUILD_TYPE=Release;make; cd ../../

For docker installation, please see install.md

Data preparation

Create folders to store data and training logs

mkdir log; mkdir tmp; 
Synthetic data

To render {silhouette, flow, rgb} observations of spot.

python scripts/render_syn.py
Real data (DAVIS)

First, download DAVIS 2017 trainval set and copy JPEGImages/Full-Resolution and Annotations/Full-Resolution folders of DAVIS-camel into the according folders in database.

cp ...davis-path/DAVIS/Annotations/Full-Resolution/camel/ -rf database/DAVIS/Annotations/Full-Resolution/
cp ...davis-path/DAVIS-lasr/DAVIS/JPEGImages/Full-Resolution/camel/ -rf database/DAVIS/JPEGImages/Full-Resolution/

Then download pre-trained VCN optical flow:

pip install gdown
mkdir ./lasr_vcn
gdown https://drive.google.com/uc?id=139S6pplPvMTB-_giI6V2dxpOHGqqAdHn -O ./lasr_vcn/vcn_rob.pth

Run VCN-robust to predict optical flow on DAVIS camel video:

bash preprocess/auto_gen.sh camel
Your own video

You will need to download and install detectron2 to obtain object segmentations as instructed below.

python -m pip install detectron2 -f \
  https://dl.fbaipublicfiles.com/detectron2/wheels/cu110/torch1.7/index.html

First, use any video processing tool (such as ffmpeg) to extract frames into JPEGImages/Full-Resolution/name-of-the-video.

mkdir database/DAVIS/JPEGImages/Full-Resolution/pika-tmp/
ffmpeg -ss 00:00:04 -i database/raw/IMG-7495.MOV -vf fps=10 database/DAVIS/JPEGImages/Full-Resolution/pika-tmp/%05d.jpg

Then, run pointrend to get segmentations:

cd preprocess
python mask.py pika path-to-detectron2-root; cd -

Assuming you have downloaded VCN flow in the previous step, run flow prediction:

bash preprocess/auto_gen.sh pika

Single video optimization

Synthetic spot Next, we want to optimize the shape, texture and camera parameters from image observartions. Optimizing spot takes ~20min on a single Titan Xp GPU.
bash scripts/spot3.sh

To render the optimized shape, texture and camera parameters

bash scripts/extract.sh spot3-1 10 1 26 spot3 no no
python render_vis.py --testdir log/spot3-1/ --seqname spot3 --freeze --outpath tmp/1.gif
DAVIS camel

Optimize on camel observations.

bash scripts/template.sh camel

To render optimized camel

bash scripts/render_result.sh camel
Costumized video (Pika)

Similarly, run the following steps to reconstruct pika

bash scripts/template.sh pika

To render reconstructed shape

bash scripts/render_result.sh pika
Monitor optimization

To monitor optimization, run

tensorboard --logdir log/

Example outputs

Evaluation

Run the following command to evaluate 3D shape accuracy for synthetic spot.

python scripts/eval_mesh.py --testdir log/spot3-1/ --gtdir database/DAVIS/Meshes/Full-Resolution/syn-spot3f/

Run the following command to evaluate keypoint accuracy on BADJA.

python scripts/eval_badja.py --testdir log/camel-5/ --seqname camel

Additional Notes

Other videos in DAVIS/BAJDA

Please refer to data preparation and optimization of the camel example, and modify camel to other sequence names, such as dance-twirl. We provide config files the configs folder.

Synthetic articulated objects

To render and reproduce results on articulated objects (Sec. 4.2), you will need to purchase and download 3D models here. We use blender to export animated meshes and run rendera_all.py:

python scripts/render_syn.py --outdir syn-dog-15 --nframes 15 --alpha 0.5 --model dog

Optimize on rendered observations

bash scripts/dog15.sh

To render optimized dog

bash scripts/render_result.sh dog
Batchsize

The current codebase is tested with batchsize=4. Batchsize can be modified in scripts/template.sh. Note decreasing the batchsize will improive speed but reduce the stability.

Distributed training

The current codebase supports single-node multi-gpu training with pytorch distributed data-parallel. Please modify dev and ngpu in scripts/template.sh to select devices.

Acknowledgement

The code borrows the skeleton of CMR

External repos:

External data:

Citation

To cite our paper,

@inproceedings{yang2021lasr,
  title={LASR: Learning Articulated Shape Reconstruction from a Monocular Video},
  author={Yang, Gengshan 
      and Sun, Deqing
      and Jampani, Varun
      and Vlasic, Daniel
      and Cole, Forrester
      and Chang, Huiwen
      and Ramanan, Deva
      and Freeman, William T
      and Liu, Ce},
  booktitle={CVPR},
  year={2021}
}  
Owner
Google
Google ❤️ Open Source
Google
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
Apply a perspective transformation to a raster image inside Inkscape (no need to use an external software such as GIMP or Krita).

Raster Perspective Apply a perspective transformation to bitmap image using the selected path as envelope, without the need to use an external softwar

s.ouchene 19 Dec 22, 2022
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.

OpenFace 2.2.0: a facial behavior analysis toolkit Over the past few years, there has been an increased interest in automatic facial behavior analysis

Tadas Baltrusaitis 5.8k Dec 31, 2022
The official PyTorch code implementation of "Human Trajectory Prediction via Counterfactual Analysis" in ICCV 2021.

Human Trajectory Prediction via Counterfactual Analysis (CausalHTP) The official PyTorch code implementation of "Human Trajectory Prediction via Count

46 Dec 03, 2022
A Re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"

What is This This is a simple re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"(1). Only Sections

102 Dec 14, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
Real-Time and Accurate Full-Body Multi-Person Pose Estimation&Tracking System

News! Aug 2020: v0.4.0 version of AlphaPose is released! Stronger tracking! Include whole body(face,hand,foot) keypoints! Colab now available. Dec 201

Machine Vision and Intelligence Group @ SJTU 6.7k Dec 28, 2022
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023
Benchmark for evaluating open-ended generation

OpenMEVA Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging. OpenMEVA is a benchmark for evaluating open-ended story generation me

25 Nov 15, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021