Official Implementation of SWAD (NeurIPS 2021)

Related tags

Deep Learningswad
Overview

SWAD: Domain Generalization by Seeking Flat Minima (NeurIPS'21)

Official PyTorch implementation of SWAD: Domain Generalization by Seeking Flat Minima.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, Sungrae Park.

Note that this project is built upon [email protected].

Preparation

Dependencies

pip install -r requirements.txt

Datasets

python -m domainbed.scripts.download --data_dir=/my/datasets/path

Environments

Environment details used for our study.

Python: 3.8.6
PyTorch: 1.7.0+cu92
Torchvision: 0.8.1+cu92
CUDA: 9.2
CUDNN: 7603
NumPy: 1.19.4
PIL: 8.0.1

How to Run

train_all.py script conducts multiple leave-one-out cross-validations for all target domain.

python train_all.py exp_name --dataset PACS --data_dir /my/datasets/path

Experiment results are reported as a table. In the table, the row SWAD indicates out-of-domain accuracy from SWAD. The row SWAD (inD) indicates in-domain validation accuracy.

Example results:

+------------+--------------+---------+---------+---------+---------+
| Selection  | art_painting | cartoon |  photo  |  sketch |   Avg.  |
+------------+--------------+---------+---------+---------+---------+
|   oracle   |   82.245%    | 85.661% | 97.530% | 83.461% | 87.224% |
|    iid     |   87.919%    | 78.891% | 96.482% | 78.435% | 85.432% |
|    last    |   82.306%    | 81.823% | 95.135% | 82.061% | 85.331% |
| last (inD) |   95.807%    | 95.291% | 96.306% | 95.477% | 95.720% |
| iid (inD)  |   97.275%    | 96.619% | 96.696% | 97.253% | 96.961% |
|    SWAD    |   89.750%    | 82.942% | 97.979% | 81.870% | 88.135% |
| SWAD (inD) |   97.713%    | 97.649% | 97.316% | 98.074% | 97.688% |
+------------+--------------+---------+---------+---------+---------+

In this example, the DG performance of SWAD for PACS dataset is 88.135%.

If you set indomain_test option to True, the validation set is splitted to validation and test sets, and the (inD) keys become to indicate in-domain test accuracy.

Reproduce the results of the paper

We provide the instructions to reproduce the main results of the paper, Table 1 and 2. Note that the difference in a detailed environment or uncontrolled randomness may bring a little different result from the paper.

  • PACS
python train_all.py PACS0 --dataset PACS --deterministic --trial_seed 0 --checkpoint_freq 100 --data_dir /my/datasets/path
python train_all.py PACS1 --dataset PACS --deterministic --trial_seed 1 --checkpoint_freq 100 --data_dir /my/datasets/path
python train_all.py PACS2 --dataset PACS --deterministic --trial_seed 2 --checkpoint_freq 100 --data_dir /my/datasets/path
  • VLCS
python train_all.py VLCS0 --dataset VLCS --deterministic --trial_seed 0 --checkpoint_freq 50 --tolerance_ratio 0.2 --data_dir /my/datasets/path
python train_all.py VLCS1 --dataset VLCS --deterministic --trial_seed 1 --checkpoint_freq 50 --tolerance_ratio 0.2 --data_dir /my/datasets/path
python train_all.py VLCS2 --dataset VLCS --deterministic --trial_seed 2 --checkpoint_freq 50 --tolerance_ratio 0.2 --data_dir /my/datasets/path
  • OfficeHome
python train_all.py OH0 --dataset OfficeHome --deterministic --trial_seed 0 --checkpoint_freq 100 --data_dir /my/datasets/path
python train_all.py OH1 --dataset OfficeHome --deterministic --trial_seed 1 --checkpoint_freq 100 --data_dir /my/datasets/path
python train_all.py OH2 --dataset OfficeHome --deterministic --trial_seed 2 --checkpoint_freq 100 --data_dir /my/datasets/path
  • TerraIncognita
python train_all.py TR0 --dataset TerraIncognita --deterministic --trial_seed 0 --checkpoint_freq 100 --data_dir /my/datasets/path
python train_all.py TR1 --dataset TerraIncognita --deterministic --trial_seed 1 --checkpoint_freq 100 --data_dir /my/datasets/path
python train_all.py TR2 --dataset TerraIncognita --deterministic --trial_seed 2 --checkpoint_freq 100 --data_dir /my/datasets/path
  • DomainNet
python train_all.py DN0 --dataset DomainNet --deterministic --trial_seed 0 --checkpoint_freq 500 --data_dir /my/datasets/path
python train_all.py DN1 --dataset DomainNet --deterministic --trial_seed 1 --checkpoint_freq 500 --data_dir /my/datasets/path
python train_all.py DN2 --dataset DomainNet --deterministic --trial_seed 2 --checkpoint_freq 500 --data_dir /my/datasets/path

Main Results

Citation

The paper will be published at NeurIPS 2021.

@inproceedings{cha2021swad,
  title={SWAD: Domain Generalization by Seeking Flat Minima},
  author={Cha, Junbum and Chun, Sanghyuk and Lee, Kyungjae and Cho, Han-Cheol and Park, Seunghyun and Lee, Yunsung and Park, Sungrae},
  booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

License

This source code is released under the MIT license, included here.

This project includes some code from DomainBed, also MIT licensed.

PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)

Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh

Zheng Li 9 Sep 26, 2022
Content shared at DS-OX Meetup

Streamlit-Projects Streamlit projects available in this repo: An introduction to Streamlit presented at DS-OX (Feb 26, 2020) meetup Streamlit 101 - Ja

Arvindra 69 Dec 23, 2022
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets"

Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Data

2 Oct 06, 2022
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

Yixuan Su 195 Dec 22, 2022
A Unified Framework and Analysis for Structured Knowledge Grounding

UnifiedSKG 📚 : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Code for paper UnifiedSKG: Unifying and Mu

HKU NLP Group 370 Dec 21, 2022
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
Deep learning models for change detection of remote sensing images

Change Detection Models (Remote Sensing) Python library with Neural Networks for Change Detection based on PyTorch. âš¡ âš¡ âš¡ I am trying to build this pr

Kaiyu Li 176 Dec 24, 2022
Deep Learning Pipelines for Apache Spark

Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra

Databricks 2k Jan 08, 2023
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

MA Jianqi, shiki 104 Jan 05, 2023
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
Fast Soft Color Segmentation

Fast Soft Color Segmentation

3 Oct 29, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022