Training RNNs as Fast as CNNs

Overview

News

SRU++, a new SRU variant, is released. [tech report] [blog]

The experimental code and SRU++ implementation are available on the dev branch which will be merged into master later.

About

SRU is a recurrent unit that can run over 10 times faster than cuDNN LSTM, without loss of accuracy tested on many tasks.


Average processing time of LSTM, conv2d and SRU, tested on GTX 1070

For example, the figure above presents the processing time of a single mini-batch of 32 samples. SRU achieves 10 to 16 times speed-up compared to LSTM, and operates as fast as (or faster than) word-level convolution using conv2d.

Reference:

Simple Recurrent Units for Highly Parallelizable Recurrence [paper]

@inproceedings{lei2018sru,
  title={Simple Recurrent Units for Highly Parallelizable Recurrence},
  author={Tao Lei and Yu Zhang and Sida I. Wang and Hui Dai and Yoav Artzi},
  booktitle={Empirical Methods in Natural Language Processing (EMNLP)},
  year={2018}
}

When Attention Meets Fast Recurrence: Training Language Models with Reduced Compute [paper]

@article{lei2021srupp,
  title={When Attention Meets Fast Recurrence: Training Language Models with Reduced Compute},
  author={Tao Lei},
  journal={arXiv preprint arXiv:2102.12459},
  year={2021}
}

Requirements

Install requirements via pip install -r requirements.txt.


Installation

From source:

SRU can be installed as a regular package via python setup.py install or pip install ..

From PyPi:

pip install sru

Directly use the source without installation:

Make sure this repo and CUDA library can be found by the system, e.g.

export PYTHONPATH=path_to_repo/sru
export LD_LIBRARY_PATH=/usr/local/cuda/lib64

Examples

The usage of SRU is similar to nn.LSTM. SRU likely requires more stacking layers than LSTM. We recommend starting by 2 layers and use more if necessary (see our report for more experimental details).

import torch
from sru import SRU, SRUCell

# input has length 20, batch size 32 and dimension 128
x = torch.FloatTensor(20, 32, 128).cuda()

input_size, hidden_size = 128, 128

rnn = SRU(input_size, hidden_size,
    num_layers = 2,          # number of stacking RNN layers
    dropout = 0.0,           # dropout applied between RNN layers
    bidirectional = False,   # bidirectional RNN
    layer_norm = False,      # apply layer normalization on the output of each layer
    highway_bias = -2,        # initial bias of highway gate (<= 0)
)
rnn.cuda()

output_states, c_states = rnn(x)      # forward pass

# output_states is (length, batch size, number of directions * hidden size)
# c_states is (layers, batch size, number of directions * hidden size)

Contributing

Please read and follow the guidelines.

Other Implementations

@musyoku had a very nice SRU implementaion in chainer.

@adrianbg implemented the first CPU version.


Comments
  • Enable both Pytorch native AMP and Nvidia APEX AMP for SRU

    Enable both Pytorch native AMP and Nvidia APEX AMP for SRU

    Hi!

    I was happily using SRUs with Pytorch native AMP, however I started experimenting with training using Microsoft DeepSpeed and bumped in to an issue.

    Basically the issues is that I observed that FP16 training using DeepSpeed doesn't work for both GRUs and SRUs. However when using Nvidia APEX AMP, DeepSpeed training using GRUs does work.

    So, based on the tips in one of your issues, I started looking in to how I could enable Pytorch native AMP and Nvidia APEX AMP for SRUs, so I could train models based on SRUs using DeepSpeed.

    That is why I created this pull request. Basically, I found that by making the code simpler, I can make SRUs work with both methods of AMP.

    Now amp_recurrence_fp16 can be used for both types of AMP. When amp_recurrence_fp16=True, the tensor's are cast to float16, otherwise nothing special happens. So, I also removed the torch.cuda.amp.autocast(enabled=False) region; I might be wrong, but it seems that we don't need it.

    I did some tests with my own code and it works in the different scenarios of interest:

    • Using PyTorch native AMP, not using DeepSpeed
    • Not using PyTorch native AMP, not using DeepSpeed
    • Using Nvidia APEX AMP, using DeepSpeed
    • Not using Nvidia APEX AMP, using DeepSpeed

    It would be beneficial if we can test this with an official SRU repo test, maybe repurposing the language_model/train_lm.py?

    opened by visionscaper 13
  • float16 handling

    float16 handling

    When I convert my model, which using this SRU unit, into float16 enabled one, it fails. Is this SRU not implemented to use in float16 environment, or is it hard to fix it?

    bug 
    opened by ywatanabe1989 11
  • support GPU inference in torchscript

    support GPU inference in torchscript

    This is on 3.0.0-dev branch for now

    A non-trivial PR to support GPU inference in torchscript

    • Load CUDA kernels as non-python modules; this is needed for torchscript compilation
    • Refactored CUDA APIs as functions that return output as tensors, instead of procedures that modify some passed-in tensors.
    • Added a workaround in case TS tries to locate and compile CUDA methods on machines that don't have CUDA / GPUs

    The refactored code has passed the forward() & backward() test. I also checked the outputs are the same for the non-torchscript and torchscript versions of the same model.

    opened by taoleicn 8
  • Error unpacking PackedSequence on latest version

    Error unpacking PackedSequence on latest version

    Hello @taolei87 , After updating to the latest version, my code broke. It works great on the previous 2.3.5 version and with nn.LSTM.

    File "C:\xxx\lib\site-packages\torch\nn\modules\module.py", line 722, in _call_impl
      result = self.forward(*input, **kwargs)
    File "C:\xxx\lib\site-packages\sru\modules.py", line 576, in forward
      mask_pad = (mask_pad >= batch_sizes.view(length, 1)).contiguous()
    RuntimeError: shape '[393, 1]' is invalid for input of size 384
    

    I can see that in the previous version the unpacking code on forward was different:

            input_packed = isinstance(input, nn.utils.rnn.PackedSequence)
            if input_packed:
                input, lengths = nn.utils.rnn.pad_packed_sequence(input)
                max_length = lengths.max().item()
                mask_pad = torch.ByteTensor([[0] * l + [1] * (max_length - l) for l in lengths.tolist()])
                mask_pad = mask_pad.to(input.device).transpose(0, 1).contiguous()
    

    Now is:

    
            orig_input = input
            if isinstance(orig_input, PackedSequence):
                input, batch_sizes, sorted_indices, unsorted_indices = input
                length = input.size(0)
                batch_size = input.size(1)
                mask_pad = torch.arange(batch_size,
                                        device=batch_sizes.device).expand(length, batch_size)
                mask_pad = (mask_pad >= batch_sizes.view(length, 1)).contiguous()
    
    bug 
    opened by bratao 8
  • Increasing GPU Usage each epoch

    Increasing GPU Usage each epoch

    I'm trying to implement a model that includes a SRUCell. This are my specs:

    Tesla M60 GPU torch.version: 0.4.1.post2 torch.cuda.version: 9.0.176

    Although its training, every epoch the memory usage in the GPU increases until it fills it. I made a toy example where this error occurs:

    import torch
    from torch.autograd import Variable
    from sru import SRUCell
    
    
    batch_size = 5
    seq_len = 60
    epochs = 1000
    cuda = torch.cuda.is_available()
    
    model = SRUCell(100, 100)
    
    if cuda:
        model.cuda(0)
    
    optimizer = torch.optim.Adam([
            {'params':model.parameters()}], lr=1e-3)
    
    loss_function = torch.nn.MSELoss()
        
    seq = Variable(torch.rand(batch_size,seq_len,100))
    y = Variable(torch.rand(batch_size,100))
    
    
    if cuda:
        seq = seq.cuda(0)
        y = y.cuda(0)
    
    
    model.train()
    
    for e in range(epochs):
        model.zero_grad()
        
        h = Variable(torch.zeros(batch_size, 100))
        c = Variable(torch.zeros(batch_size, 100))
        
        if cuda:
            h = h.cuda(0)
            c = c.cuda(0)
        
        for i in range(seq_len):
            x = seq[:,i,:]
            h, c = model(x, c)
        loss = loss_function(h, y)
        loss.backward()
        optimizer.step()
        print('Epoch: {} - Loss: {}'.format(e, loss))
    
    opened by santiag0m 8
  • Can i put hidden states in sru cell forward like in vanilla pytorch?

    Can i put hidden states in sru cell forward like in vanilla pytorch?

    In vanilla it work like this

    rnn = nn.LSTMCell(10, 20)
    input = torch.randn(6, 3, 10)
    hx = torch.randn(3, 20)
    cx = torch.randn(3, 20)
    output = []
    for i in range(6):
        hx, cx = rnn(input[i], (hx, cx))
        output.append(hx)
    

    How can i do same for sru cell?

    opened by hadaev8 7
  • AttributeError when preprocessing data for DrQA

    AttributeError when preprocessing data for DrQA

    Firstly i ran download.sh, and it succesfully downloaded glove and train/dev jsons for SQuAD. However, python prepro.py gave me this:

    Traceback (most recent call last):
      File "prepro.py", line 243, in <module>
        vocab_tag = list(nlp.tagger.tag_names)
    AttributeError: 'Tagger' object has no attribute 'tag_names'
    

    My Spacy version is 2.0.3, and it seems like something broke in update from 1.x that is written in requirements, and I didn't succeed in fixing it myself. Any suggests?

    opened by mojesty 7
  • Calculating Backwards For SRU Results in CUDA error.

    Calculating Backwards For SRU Results in CUDA error.

    I'm not sure how, but I'm seeing this error when I try to compute the backwards function. Don't know if you've come across this during your debug?

    Traceback (most recent call last):
      File "gan_language.py", line 341, in <module>
        G.backward(one)
      File "/usr/local/lib/python2.7/dist-packages/torch/autograd/variable.py", line 156, in backward
        torch.autograd.backward(self, gradient, retain_graph, create_graph, retain_variables)
      File "/usr/local/lib/python2.7/dist-packages/torch/autograd/__init__.py", line 98, in backward
        variables, grad_variables, retain_graph)
      File "/home/nick/wgan-gp/sru/cuda_functional.py", line 417, in backward
        stream=SRU_STREAM
      File "cupy/cuda/function.pyx", line 129, in cupy.cuda.function.Function.__call__ (cupy/cuda/function.cpp:4010)  File "cupy/cuda/function.pyx", line 111, in cupy.cuda.function._launch (cupy/cuda/function.cpp:3647)
      File "cupy/cuda/driver.pyx", line 127, in cupy.cuda.driver.launchKernel (cupy/cuda/driver.cpp:2541)
      File "cupy/cuda/driver.pyx", line 62, in cupy.cuda.driver.check_status (cupy/cuda/driver.cpp:1446)
    cupy.cuda.driver.CUDADriverError: CUDA_ERROR_INVALID_HANDLE: invalid resource handle
    
    opened by NickShahML 7
  • Speed up data loading / batching for ONE BILLION WORD experiment

    Speed up data loading / batching for ONE BILLION WORD experiment

    The data loading was inefficient and was found to be the bottleneck of BILLION WORD training. This PR rewrote the sharding (which data goes to a certain GPU / training process), and improved the training speed significantly.

    The figure compares a previous run and a new test run. We see 40% reduction on training time.

    This means our reported training efficiency will be much stronger from 59 GPU days to 36 GPU days, and 4x more efficient than FairSeq Transformer results.

    opened by taoleicn 6
  • Different input dimention compared to output dimension

    Different input dimention compared to output dimension

    Hi, I'm trying to implement a naive version of this paper in Keras, and was wondering how is the case that - n_in != n_out handled.

    I went through the code a few times, and couldn't understand the element wise multiplication of (1 - r_t) with x_t, if x_t is of a different shape than r_t.

    question 
    opened by titu1994 6
  • support GPU inference in torchscript model for v2.5 / v2.6

    support GPU inference in torchscript model for v2.5 / v2.6

    This PR works for master branch, v2.5 and v2.6 release

    A non-trivial PR to support GPU inference in torchscript

    • Load CUDA kernels as non-python modules; this is needed for torchscript compilation
    • Refactored CUDA APIs as functions that return output as tensors, instead of procedures that modify some passed-in tensors.
    • Added a workaround in case TS tries to locate and compile CUDA methods on machines that don't have CUDA / GPUs
    • The refactored code has passed the forward() & backward() test.
    • I also checked the outputs are the same for the non-torchscript and torchscript versions of the same model.
    opened by taoleicn 5
  • Mixed Precision Training

    Mixed Precision Training

    Hi,

    first of all I want to thank you for your great work. I'm using SRUs for speech enhancement, they do very well on a reasonable computational cost.

    I would like to know if there is a possibility to train SRUs in mixed precision mode? I tried to enable it, by setting precision=16 in the pytorch lightning trainer, but that didn't do the trick.

    Kind of regards, Zadagu

    opened by Zadagu 1
  • Any documentation on using SRU++ ?

    Any documentation on using SRU++ ?

    Hello, I've read and really appreciated your team's wonderful works on SRU++. I want to implement this architecture in other tasks, but i'm having problem finding the documentation on SRU++, as how I can use SRU++ the same way as SRU (calling directly from sru library after installing by pip install sru). I have looked into the dev-3.0.0 branch, which seems like the latest updated branch, but I still have no clues how to call and integrate sru++ modules into my custom defined pytorch modules. Could you help me ?

    opened by thangld201 1
  • FAILED: sru_cuda_kernel.cuda.o

    FAILED: sru_cuda_kernel.cuda.o

    when i run example, i meet this issue:FAILED: sru_cuda_kernel.cuda.o ,and in the end, it report ninja: build stopped: subcommand failed. what should i do to slove this problem?

    opened by xianyu-123 0
  • Avoid unintended eager cuda initialization

    Avoid unintended eager cuda initialization

    We noticed the package initialization for sru is eagerly triggering the initialization because of the following stack of module imports sru.modules -> sru.ops -> cuda_functional and this last module is executing the function load of torch.utils.cpp_extension.

    This was detected because of issues caused when running with the server framework in SUBPROCESS_MODE, that is forking a new process for it to run the model. We got an error complaining that CUDA had been already initialized in the parent process, which was not necessary because it is not meant to run the inference in the model.

    This PR changes this loading to be more lazy, more concretely we changed the code in sru.modules to avoid the eager import of sru.ops and instead postpone it to the instantiation of a first SRUCell.

    The changes in this PR have been tested doing a checkout of this branch in an AWS instance with GPU and running pytest -sv test which resulted in 141 passed, 161 warnings and no failures. So we understand this is working as expected for both CPU and GPU settings.

    opened by dkasapp 0
  • Unknown builtin op: sru_cuda::sru_bi_forward_simple

    Unknown builtin op: sru_cuda::sru_bi_forward_simple

    When using a bidirectional SRU, regular usage seems to be fine, and compilation to torchscript proceeds without error, but upon trying to infer with the compiled torchscript I get:

    Unknown builtin op: sru_cuda::sru_bi_forward_simple.

    Using pytorch 1.10, sru 2.6.0, cuda 11.3

    opened by ctlaltdefeat 2
Releases(v2.7.0-rc1)
Owner
ASAPP Research
AI for Enterprise
ASAPP Research
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints

CLGo This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints An earlier

刘芮金 32 Dec 20, 2022
Learning Representations that Support Robust Transfer of Predictors

Transfer Risk Minimization (TRM) Code for Learning Representations that Support Robust Transfer of Predictors Prepare the Datasets Preprocess the Scen

Yilun Xu 15 Dec 07, 2022
Deep and online learning with spiking neural networks in Python

Introduction The brain is the perfect place to look for inspiration to develop more efficient neural networks. One of the main differences with modern

Jason Eshraghian 447 Jan 03, 2023
The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

MOTIF Dataset The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled

Booz Allen Hamilton 112 Dec 13, 2022
Identifying Stroke Indicators Using Rough Sets

Identifying Stroke Indicators Using Rough Sets With the spirit of reproducible research, this repository contains all the codes required to produce th

Muhammad Salman Pathan 0 Jun 09, 2022
Computer Vision application in the web

Computer Vision application in the web Preview Usage Clone this repo git clone https://github.com/amineHY/WebApp-Computer-Vision-streamlit.git cd Web

Amine Hadj-Youcef. PhD 35 Dec 06, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
U-Net: Convolutional Networks for Biomedical Image Segmentation

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Yihui He 401 Nov 21, 2022
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 06, 2023
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
Rotation Robust Descriptors

RoRD Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching Project Page | Paper link Evaluation and Datasets MMA : Training on

Udit Singh Parihar 25 Nov 15, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)

GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C

Wu Huikai 402 Dec 27, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022