SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

Overview

CORNELLSASLAB

SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

Instructions:

This python code can be used to convert SAS outputs from the lang and ac lab into data tables for regression and factorial summaries. SAS formst varies by run, therefore you may have to do a little editing before the code works.

For example, a working data chunk for this program would look something like this:

                  Differences of CHILDAGE*TASK*TR Least Squares Means

                                                     Standard
CHILDAGE  TASK  TR  _CHILDAGE  _TASK  _TR  Estimate     Error     DF  t Value  Pr > |t|

1         2     1   8          1      1     -0.4167    0.1251   1544    -3.33    0.0009
1         2     1   8          1      2     -0.2917    0.1251   1544    -2.33    0.0199
1         2     2   7          2      3     -0.4375    0.1363   1544    -3.21    0.0014
1         2     2   8          1      1     -0.4583    0.1251   1544    -3.66    0.0003

The SAS System 15:01 Sunday, August 4, 2019 139

                                 The GLIMMIX Procedure

                  Differences of CHILDAGE*TASK*TR Least Squares Means

                                                     Standard
CHILDAGE  TASK  TR  _CHILDAGE  _TASK  _TR  Estimate     Error     DF  t Value  Pr > |t|

1         2     2   8          1      2     -0.3333    0.1251   1544    -2.66    0.0078
1         2     2   8          1      3     -0.5625    0.1251   1544    -4.50    <.0001
1         2     2   8          2      1     -0.5833    0.1363   1544    -4.28    <.0001
1         2     3   7          2      3     -0.4167    0.1363   1544    -3.06    0.0023
1         2     3   8          1      1     -0.4375    0.1251   1544    -3.50    0.0005
1         2     3   8          1      2     -0.3125    0.1251   1544    -2.50    0.0126
1         2     3   8          1      3     -0.5417    0.1251   1544    -4.33    <.0001

The SAS System 15:01 Sunday, August 4, 2019 140

                                 The GLIMMIX Procedure

                  Differences of CHILDAGE*TASK*TR Least Squares Means

                                                     Standard
CHILDAGE  TASK  TR  _CHILDAGE  _TASK  _TR  Estimate     Error     DF  t Value  Pr > |t|

1         2     3   8          2      1     -0.5625    0.1363   1544    -4.13    <.0001
1         2     3   8          2      2     -0.5208    0.1363   1544    -3.82    0.0001
1         2     3   8          2      3     -0.4583    0.1363   1544    -3.36    0.0008
2         1     1   2          1      2    6.66E-16   0.07654   1544     0.00    1.0000
2         1     1   2          1      3    -0.08333   0.07654   1544    -1.09    0.2764
2         1     1   8          2      1     -0.4583    0.1251   1544    -3.66    0.0003
2         1     1   8          2      2     -0.4167    0.1251   1544    -3.33    0.0009
2         1     1   8          2      3     -0.3542    0.1251   1544    -2.83    0.0047

The SAS System 15:01 Sunday, August 4, 2019 141

As you can see, every chunk starts with the same title, and ends with a date and page number in the bottom right corner. All of the chunks have the same format and same number of columns. If the format of the pasted chunks is wrong, the code likely won't work.

NOTE: when pasting the file path to your excel document, make sure excel is not running on your computer, or else there will be an error.

Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

ICT.MIRACLE lab 75 Dec 26, 2022
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

26 Nov 23, 2022
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
ACV is a python library that provides explanations for any machine learning model or data.

ACV is a python library that provides explanations for any machine learning model or data. It gives local rule-based explanations for any model or data and different Shapley Values for tree-based mod

Salim Amoukou 85 Dec 27, 2022
Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun

ARAE Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun https://arxiv.org/abs/1706.04223 Disc

Junbo (Jake) Zhao 399 Jan 02, 2023
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
Implementations of polygamma, lgamma, and beta functions for PyTorch

lgamma Implementations of polygamma, lgamma, and beta functions for PyTorch. It's very hacky, but that's usually ok for research use. To build, run: .

Rachit Singh 24 Nov 09, 2021
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
TraSw for FairMOT - A Single-Target Attack example (Attack ID: 19; Screener ID: 24):

TraSw for FairMOT A Single-Target Attack example (Attack ID: 19; Screener ID: 24): Fig.1 Original Fig.2 Attacked By perturbing only two frames in this

Derry Lin 21 Dec 21, 2022