Keras Model Implementation Walkthrough

Overview

Keras Model Implementation Walkthrough

This guide has a companion blog post.

The Keras Model class is one of the centerpieces of the framework. It encapsulates metric tracking, callbacks, distribution, training loops, various input types, and a wide variety of other training related behavior. This has led to the Model class containing a large volume of code that can be intimidating to sift through.

This guide walks through a simplified model implementation in order to help you understand what model does under the hood. After following along with this guide you will understand how the keras model class achieves the behavior listed above.

The SimplifiedModel can also serve as a starting point for those looking to implement custom models or training loops. A forkable template using the SimplifiedModel class be found on my github at https://github.com/lukewood/ModelWalkthrough.

For the sake of brevity, the class written in this guide subclasses keras.layers.Layer to leverage some helper functions, such as Keras' __call__ implementation.

Core Implementation

Let's create a basic implementation that supports compile(), fit(), predict(), and eval() before we introduce distribution strategy, metric tracking, callbacks, and other features.

Note that the SimplifiedModel class operates as a keras.Model subclass, overriding the call() method to produce predictions.

import tensorflow as tf
import tensorflow.keras as keras
import tensorflow.keras.optimizers as optimizers

class SimplifiedModel(keras.layers.Layer):
  """SimplifiedModel is a stripped down barebones version of keras.Model."""

  def __init__(self, *args, **kwargs):
    super(SimplifiedModel, self).__init__(*args, **kwargs)
    self.dense = keras.layers.Dense(1)
    self.distribute_strategy = tf.distribute.get_strategy()
  
  def compile(self,
              optimizer='rmsprop',
              loss=None,
              metrics=None,
              loss_weights=None):
    with self.distribute_strategy.scope():
      self.optimizer = optimizers.get(optimizer)
      self.loss = loss
      self.metrics_list = metrics if isinstance(metrics, list) else [metrics]

  def call(self, inputs):
    return self.dense(inputs)

  def predict_step(self, x):
    return self(x, training=False)

  def train_step(self, data):
    x, y = data
    # Run forward pass.
    with tf.GradientTape() as tape:
      y_pred = self(x, training=True)
      loss = self.loss(y, y_pred)
      for extra_loss in self.losses:
        loss += scale_loss_for_distribution(extra_loss)

    self.optimizer.minimize(loss, self.trainable_variables, tape=tape)

    return_metrics = {'loss': loss}
    for metric in self.metrics_list:
      metric.update_state(y, y_pred, None)
      result = metric.result()
      if isinstance(result, dict):
        return_metrics.update(result)
      else:
        return_metrics[metric.name] = result
    return return_metrics

  def fit(self, dataset: tf.data.Dataset, epochs=1, verbose=1):
    """This simplified version of fit only accepts a TensorFlow dataset.

    Args:
      dataset: tf.data.Dataset, must yield a tuple of inputs and a one hot
        encoded vector containing labels
      epochs: number of passes to perform over the verbosity
      verbose: verbosity of logging during fit
    """
    for epoch in range(epochs):
      for batch in dataset:
        metrics = self.train_step(batch)
        metric_str = ', '.join(
            [f'{metric_name}: {val}' for metric_name, val in metrics.items()])
        # Minimal progress logging implementation
        print(f'\repoch: ({epoch+1}/{epochs}), {metric_str}', end='')
    print()

  def test_step(self, x, y):
    y_pred = self(x, training=False)
    loss = self.loss(y, y_pred)
    for extra_loss in self.losses:
      loss += scale_loss_for_distribution(extra_loss)

    return_metrics = {
        'loss': loss,
    }

    for metric in self.metrics_list:
      metric.update_state(y, y_pred, None)
      result = metric.result()
      if isinstance(result, dict):
        return_metrics.update(result)
      else:
        return_metrics[metric.name] = result
    return return_metrics

  def evaluate(self, dataset):
    self.reset_metrics()
    metrics_aggregate = []
    for xs, ys in dataset:
      self.reset_metrics()
      metrics_aggregate.append(self.test_step(xs, ys))

    if not metrics_aggregate:
      raise ValueError('dataset must contain at least one batch of samples.  '
                       f'Received: {dataset}')

    result = {}
    for k in metrics_aggregate[0]:
      result[k] = 0.

    for metric_iter in metrics_aggregate:
      for k, v in metric_iter.items():
        result[k] += v / len(metrics_aggregate)
    return result

  def predict(self, dataset):
    result = []
    for xs in dataset:
      result.append(self(xs, training=False))
    return tf.concat(result, axis=0)

  def reset_metrics(self):
    for metric in self.metrics_list:
      metric.reset_state()

When you first construct a model, it exists in an uncompiled state. In this state the optimizer, compiled metrics, and loss have not yet been created. The compile() method creates the optimizer, takes a loss function, and creates a reference to a list of metrics. These are all later used in training.

train_step, predict_step, and eval_step all contain the logic to perform a single step of their corresponding methods: fit(), predict(), and evaluate() respectively. Note that while predict_step() simply invokes call, train_step() and eval_step() track loss and metrics.

The simplified model class expects a tf.data.Dataset as an input to fit(), predict(), and evaluate(). The model offloads the batching behavior to the dataset. To use the model, you'd do something like this:

import numpy as np
import tensorflow.keras.losses as losses

model = SimplifiedModel()

x, y = np.zeros((1000, 10)), np.ones((1000, 1))
ds = tf.data.Dataset.from_tensor_slices((x, y))
# Our model expects the dataset to be batched
ds = ds.batch(10)

ds_test = tf.data.Dataset.from_tensor_slices((x))
ds_test = ds_test.batch(10)

model.compile('sgd', 
              loss=losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.SUM), 
              metrics=[tf.keras.metrics.MeanAbsolutePercentageError()]
)
model.build(input_shape=(None, 10))
metrics = model.evaluate(ds)
print('Metrics Before Fit:', metrics)

model.fit(ds, epochs=10, verbose=2)

metrics = model.evaluate(ds)
print('Metrics After Fit:', metrics)
Metrics Before Fit: {'loss': 
   
    , 'mean_absolute_percentage_error': 
    
     }
epoch: (10/10), loss: 1.4210854715202004e-13, mean_absolute_percentage_error: 0.5994006395339966
Metrics After Fit: {'loss': 
     
      , 'mean_absolute_percentage_error': 
      
       }

      
     
    
   

This model class implements our expected behavior, but it's missing some critical logic that keras.Model implements.

Perhaps most notably, this model does not support distribution.

Batched Execution, Compiled train_step()

Currently we are executing our train_step() calls one at a time, the train_step() function is not a compiled tf.function, and the model does not work the TensorFlow distribution strategies. In this section we will implement all of these performance enhancements and net massive performance gains.

First, we begin by wrapping train_step() in a compiled function:

class SimplifiedModel(keras.Model):
  # ... 
  def make_train_function(self):
    if self.train_function:
      return self.train_function

    def step_function(model, iterator):

      def run_step(data):
        outputs = model.train_step(data)
        model._train_counter.assign_add(1)  # pylint: disable=protected-access
        return outputs

      data = next(iterator)
      outputs = model.distribute_strategy.run(run_step, args=(data,))
      return model.distribute_strategy.unwrap(outputs)[0]

    def train_function(iterator):
      """Runs a training execution with multiple steps."""
      # Autograph cannot infer the return type of undeclared non-Tensor
      # variables from inside loops. The limitations documentation explains this
      # https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/g3doc/reference/limitations.md
      names = [m.name for m in self.metrics_list] + ['loss']
      outputs = dict.fromkeys(names, 0.)
      for _ in tf.range(self.steps_per_execution):
        outputs = step_function(self, iterator)
      return outputs

    train_function = tf.function(train_function, experimental_relax_shapes=True)

    # A separate function is needed to prevent self-referential
    # infinitely-recursive closures
    cluster_train_function = None
    if self._cluster_coordinator:
      # pylint: disable=g-long-lambda
      cluster_train_function = lambda it: self._cluster_coordinator.schedule(
          train_function, args=(it,))

    self.train_function = cluster_train_function or train_function
    return self.train_function

This function also runs the train_step() function using the model's provided distribution strategy.

Next, we need to update our fit() method to utilize this new train function:

  def fit(self, dataset: tf.data.Dataset, epochs=1, verbose=1):
    """This simplified version of fit only accepts a TensorFlow dataset.

    Args:
      dataset: tf.data.Dataset, must yield a tuple of inputs and a one hot
        encoded vector containing labels
      epochs: number of passes to perform over the verbosity
      verbose: verbosity of logging during fit
    """
    if self.distribute_strategy._should_use_with_coordinator:  # pylint: disable=protected-access
      self._cluster_coordinator = tf.distribute.experimental.coordinator.ClusterCoordinator(
          self.distribute_strategy)
      dataset = self._cluster_coordinator.create_per_worker_dataset(dataset)

    for epoch in range(epochs):
        iterator = iter(dataset)
        for step in range(0, steps_per_epoch, self.steps_per_execution):
          try:
            # returns {'loss': loss, 'metric1': val1, ...}
            metrics = self.train_function(iterator)
            metric_str = ', '.join(
              [f'{metric_name}: {val}' for metric_name, val in metrics.items()])
            print(f'\repoch: ({epoch+1}/{epochs}), {metric_str}', end='')
          except tf.errors.OutOfRangeError:
            break
        print()

Next, we will implement computation batching. By batching computation, we reduce the number of context transfers between the computation host and the python side callbacks. In the Keras model class this is done by the steps_per_execution parameter passed to the compile() method.

First, we need to update compile() to include this new parameter:

  def compile(self,
              optimizer='rmsprop',
              loss=None,
              metrics=None,
              loss_weights=None,
              weighted_metrics=None,
              steps_per_execution=1):
    # We need to compile the loss and metrics within the strategy scope
    with self.distribute_strategy.scope():
      self.steps_per_execution = steps_per_execution
      ...

Keras Callbacks

Keras callbacks are objects that perform actions at various stages of training. There is a large library of existing callbacks to handle things like:

  • Write TensorBoard logs after every batch of training to monitor your metrics
  • Periodically save your model to disk
  • Do early stopping
  • Get a view on internal states and statistics of a model during training
  • ...and more

You can read more about callbacks here: https://keras.io/api/callbacks/

Let's integrate Keras callbacks into our SimplifiedModel class.

In order to do so, we will need to add a callbacks parameter to our fit() method. Additionally, we will wrap the callbacks into a Keras CallbackList:

  def fit(
      self,
      dataset,
      epochs=1,
      verbose=1,
      steps_per_epoch=sys.maxsize,  # default to max to iterate entire dataset
      callbacks=None):
    """This simplified version of fit only accepts a TensorFlow dataset.

    Args:
      dataset: tf.data.Dataset, must yield a tuple of inputs and a one hot
        encoded vector containing labels
      epochs: number of passes to perform over the verbosity
      verbose: verbosity of logging during fit
      steps_per_epoch: number of steps that counts as an epoch, useful with
        endless datasets.  When using a finite dataset, leave as sys.maxsize.
      callbacks: list of Keras callbacks
    """
    callbacks = callbacks_module.CallbackList(
        callbacks,
        add_history=True,
        add_progbar=verbose != 0,
        model=self,
        verbose=verbose,
        epochs=epochs)

    dataset = self.distribute_strategy.experimental_distribute_dataset(dataset)

    if self.distribute_strategy._should_use_with_coordinator:  # pylint: disable=protected-access
      self._cluster_coordinator = tf.distribute.experimental.coordinator.ClusterCoordinator(
          self.distribute_strategy)
      dataset = self._cluster_coordinator.create_per_worker_dataset(dataset)

    self.make_train_function()
    self._train_counter.assign(0)
    callbacks.on_train_begin()
    for epoch in range(epochs):
      iterator = iter(dataset)
      callbacks.on_epoch_begin(epoch)
      for step in range(0, steps_per_epoch, self.steps_per_execution):
        callbacks.on_train_batch_begin(step)
        try:
          # returns {'loss': loss, 'metric1': val1, ...}
          unused_metrics = self.train_function(iterator)
        except tf.errors.OutOfRangeError:
          break
        callbacks.on_train_batch_end(step)
      callbacks.on_epoch_end(epoch, None)

We can now pass any Keras callbacks to fit() and have it behave as expected. Additionally, we now get the Keras progress bar when running fit.

Final Usage, Recap

The final code for the SimplifiedModel class is available below:

"""SimplifiedModel is a barebones Keras model class.

The intended use of this class is for end users to fork this class and replace
`compile()`, `fit()` and `predict()` with their own logic.
"""
import sys

import tensorflow as tf


class SimplifiedModel(tf.keras.layers.Layer):
  """SimplifiedModel is a stripped down barebones version of keras.Model."""
  
  def __init__(self, *args, **kwargs):
    super(SimplifiedModel, self).__init__(*args, **kwargs)
    self.dense = tf.keras.layers.Dense(1)
    self.distribute_strategy = tf.distribute.get_strategy()
    agg = tf.VariableAggregation.ONLY_FIRST_REPLICA
    self._train_counter = tf.Variable(0, dtype='int64', aggregation=agg, trainable=False)
    self._cluster_coordinator = None
    if self.distribute_strategy._should_use_with_coordinator:
      self._cluster_coordinator = tf.distribute.experimental.coordinator.ClusterCoordinator(
          self.distribute_strategy)

  def compile(self,
              optimizer='rmsprop',
              loss=None,
              metrics=None,
              loss_weights=None,
              weighted_metrics=None,
              steps_per_execution=1):
    # We need to compile the loss and metrics within the strategy scope
    with self.distribute_strategy.scope():
      self.optimizer = optimizers.get(optimizer)
      self.loss = loss
      self.metrics_list = metrics if isinstance(metrics, list) else [metrics]
      self.steps_per_execution = steps_per_execution
      self.train_function = None
      self._is_compiled = True

  def call(self, inputs):
    return self.dense(inputs)

  def predict_step(self, x):
    return self(x, training=False)

  def train_step(self, data):
    x, y = data
    # Run forward pass.
    with tf.GradientTape() as tape:
      y_pred = self(x, training=True)
      loss = self.loss(y, y_pred)
      for extra_loss in self.losses:
        loss += scale_loss_for_distribution(extra_loss)

    # Run backwards pass.
    self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
    # Collect metrics to return
    return_metrics = {'loss': loss}
    for metric in self.metrics:
      metric.update_state(y, y_pred, None)
      result = metric.result()
      if isinstance(result, dict):
        return_metrics.update(result)
      else:
        return_metrics[metric.name] = result
    return return_metrics

  def fit(
      self,
      dataset,
      epochs=1,
      verbose=1,
      steps_per_epoch=sys.maxsize,  # default to max to iterate entire dataset
      callbacks=None):
    """This simplified version of fit only accepts a TensorFlow dataset.

    Args:
      dataset: tf.data.Dataset, must yield a tuple of inputs and a one hot
        encoded vector containing labels
      epochs: number of passes to perform over the verbosity
      verbose: verbosity of logging during fit
      steps_per_epoch: number of steps that counts as an epoch, useful with
        endless datasets.  When using a finite dataset, leave as sys.maxsize.
      callbacks: list of Keras callbacks
    """
    callbacks = tf.keras.callbacks.CallbackList(
        callbacks,
        add_history=True,
        add_progbar=verbose != 0,
        model=self,
        verbose=verbose,
        epochs=epochs)

    dataset = self.distribute_strategy.experimental_distribute_dataset(dataset)

    if self.distribute_strategy._should_use_with_coordinator:  # pylint: disable=protected-access
      self._cluster_coordinator = tf.distribute.experimental.coordinator.ClusterCoordinator(
          self.distribute_strategy)
      dataset = self._cluster_coordinator.create_per_worker_dataset(dataset)

    self.make_train_function()
    self._train_counter.assign(0)
    callbacks.on_train_begin()
    for epoch in range(epochs):
      iterator = iter(dataset)
      callbacks.on_epoch_begin(epoch)
      for step in range(0, steps_per_epoch, self.steps_per_execution):
        callbacks.on_train_batch_begin(step)
        try:
          # returns {'loss': loss, 'metric1': val1, ...}
          unused_metrics = self.train_function(iterator)
        except tf.errors.OutOfRangeError:
          break
        callbacks.on_train_batch_end(step)
      callbacks.on_epoch_end(epoch, None)

  def make_train_function(self):
    if self.train_function:
      return self.train_function

    def step_function(model, iterator):

      def run_step(data):
        outputs = model.train_step(data)
        model._train_counter.assign_add(1)  # pylint: disable=protected-access
        return outputs

      data = next(iterator)
      outputs = model.distribute_strategy.run(run_step, args=(data,))
      return model.distribute_strategy.unwrap(outputs)[0]

    def train_function(iterator):
      """Runs a training execution with multiple steps."""
      # Autograph cannot infer the return type of undeclared non-Tensor
      # variables from inside loops. The limitations documentation explains this
      # https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/g3doc/reference/limitations.md
      names = [m.name for m in self.metrics] + ['loss']
      outputs = dict.fromkeys(names, 0.)
      for _ in tf.range(self.steps_per_execution):
        outputs = step_function(self, iterator)
      return outputs

    train_function = tf.function(train_function, experimental_relax_shapes=True)

    # A separate function is needed to prevent self-referential
    # infinitely-recursive closures
    cluster_train_function = None
    if self._cluster_coordinator:
      # pylint: disable=g-long-lambda
      cluster_train_function = lambda it: self._cluster_coordinator.schedule(
          train_function, args=(it,))

    self.train_function = cluster_train_function or train_function
    return self.train_function

  def test_step(self, x, y):
    y_pred = self(x, training=False)
    loss = self.loss(y, y_pred)
    for extra_loss in self.losses:
      loss += scale_loss_for_distribution(extra_loss)

    return_metrics = {
        'loss': loss,
    }

    for metric in self.metrics:
      metric.update_state(y, y_pred, None)
      result = metric.result()
      if isinstance(result, dict):
        return_metrics.update(result)
      else:
        return_metrics[metric.name] = result
    return return_metrics

  def evaluate(self, dataset):
    self.reset_metrics()
    metrics_aggregate = []
    for xs, ys in dataset:
      self.reset_metrics()
      metrics_aggregate.append(self.test_step(xs, ys))

    if not metrics_aggregate:
      raise ValueError('dataset must contain at least one batch of samples.  '
                       f'Received: {dataset}')

    result = {}
    for k in metrics_aggregate[0]:
      result[k] = 0.

    for metric_iter in metrics_aggregate:
      for k, v in metric_iter.items():
        result[k] += v / len(metrics_aggregate)
    return result

  def predict(self, dataset):
    result = []
    for xs in dataset:
      result.append(self(xs, training=False))
    return tf.concat(result, axis=0)

  def reset_metrics(self):
    for metric in self.metrics_list:
      metric.reset_state()

Below is an example use of the SimplifiedModel class:

import numpy as np
import tensorflow.keras.losses as losses

try:
  strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0")
  print("Using OneDeviceStrategy")
except:
  strategy = tf.distribute.get_strategy()
  print("Using", strategy)

# Make sure to create all `tf.Variable`s under the `scope`.
with strategy.scope():
  model = SimplifiedModel()

  x, y = np.zeros((1000, 10)), np.ones((1000, 1))
  ds = tf.data.Dataset.from_tensor_slices((x, y))
  # Our model expects the dataset to be batched
  ds = ds.batch(10)

  ds_test = tf.data.Dataset.from_tensor_slices((x))
  ds_test = ds_test.batch(10)

  model.compile('sgd',
    loss=losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.SUM),
    metrics=[tf.keras.metrics.MeanAbsolutePercentageError()],
    steps_per_execution=5
  )
  metrics = model.evaluate(ds)
  print('Metrics Before Fit:', metrics)

  model.fit(ds, epochs=10, verbose=2)

  # we can go ahead and predict some values
  y_pred = model.predict(ds_test)
  print('Predictions Shape:', y_pred.shape)

  metrics = model.evaluate(ds)
  print('Metrics After:', metrics)
Using OneDeviceStrategy
Metrics Before Fit: {'loss': 
   
    , 'mean_absolute_percentage_error': 
    
     }
Epoch 1/10
101/101 - 1s - 538ms/epoch - 5ms/step
Epoch 2/10
101/101 - 0s - 214ms/epoch - 2ms/step
Epoch 3/10
101/101 - 0s - 234ms/epoch - 2ms/step
Epoch 4/10
101/101 - 0s - 223ms/epoch - 2ms/step
Epoch 5/10
101/101 - 0s - 221ms/epoch - 2ms/step
Epoch 6/10
101/101 - 0s - 223ms/epoch - 2ms/step
Epoch 7/10
101/101 - 0s - 220ms/epoch - 2ms/step
Epoch 8/10
101/101 - 0s - 213ms/epoch - 2ms/step
Epoch 9/10
101/101 - 0s - 248ms/epoch - 2ms/step
Epoch 10/10
101/101 - 0s - 251ms/epoch - 2ms/step
Predictions Shape: (1000, 1)
Metrics After: {'loss': 
     
      , 'mean_absolute_percentage_error': 
      
       }

      
     
    
   
%%timeit
model.fit(ds, epochs=10, verbose=2)
Epoch 1/10
101/101 - 0s - 482ms/epoch - 5ms/step
Epoch 2/10
101/101 - 0s - 276ms/epoch - 3ms/step
Epoch 3/10
101/101 - 0s - 255ms/epoch - 3ms/step
Epoch 4/10
101/101 - 0s - 224ms/epoch - 2ms/step
Epoch 5/10
101/101 - 0s - 234ms/epoch - 2ms/step
Epoch 6/10
101/101 - 0s - 221ms/epoch - 2ms/step
Epoch 7/10
101/101 - 0s - 249ms/epoch - 2ms/step
Epoch 8/10
101/101 - 0s - 244ms/epoch - 2ms/step
Epoch 9/10
101/101 - 0s - 240ms/epoch - 2ms/step
Epoch 10/10
101/101 - 0s - 245ms/epoch - 2ms/step
Epoch 1/10
101/101 - 0s - 219ms/epoch - 2ms/step
Epoch 2/10
101/101 - 0s - 225ms/epoch - 2ms/step
Epoch 3/10
101/101 - 0s - 243ms/epoch - 2ms/step
Epoch 4/10
101/101 - 0s - 222ms/epoch - 2ms/step
Epoch 5/10
101/101 - 0s - 225ms/epoch - 2ms/step
Epoch 6/10
101/101 - 0s - 280ms/epoch - 3ms/step
Epoch 7/10
101/101 - 0s - 272ms/epoch - 3ms/step
Epoch 8/10
101/101 - 0s - 272ms/epoch - 3ms/step
Epoch 9/10
101/101 - 0s - 262ms/epoch - 3ms/step
Epoch 10/10
101/101 - 0s - 244ms/epoch - 2ms/step
Epoch 1/10
101/101 - 0s - 229ms/epoch - 2ms/step
Epoch 2/10
101/101 - 0s - 278ms/epoch - 3ms/step
Epoch 3/10
101/101 - 0s - 260ms/epoch - 3ms/step
Epoch 4/10
101/101 - 0s - 278ms/epoch - 3ms/step
Epoch 5/10
101/101 - 0s - 270ms/epoch - 3ms/step
Epoch 6/10
101/101 - 0s - 249ms/epoch - 2ms/step
Epoch 7/10
101/101 - 0s - 244ms/epoch - 2ms/step
Epoch 8/10
101/101 - 0s - 272ms/epoch - 3ms/step
Epoch 9/10
101/101 - 0s - 269ms/epoch - 3ms/step
Epoch 10/10
101/101 - 0s - 225ms/epoch - 2ms/step
Epoch 1/10
101/101 - 0s - 240ms/epoch - 2ms/step
Epoch 2/10
101/101 - 0s - 275ms/epoch - 3ms/step
Epoch 3/10
101/101 - 0s - 233ms/epoch - 2ms/step
Epoch 4/10
101/101 - 0s - 225ms/epoch - 2ms/step
Epoch 5/10
101/101 - 0s - 239ms/epoch - 2ms/step
Epoch 6/10
101/101 - 0s - 246ms/epoch - 2ms/step
Epoch 7/10
101/101 - 0s - 227ms/epoch - 2ms/step
Epoch 8/10
101/101 - 0s - 262ms/epoch - 3ms/step
Epoch 9/10
101/101 - 0s - 245ms/epoch - 2ms/step
Epoch 10/10
101/101 - 0s - 230ms/epoch - 2ms/step
Epoch 1/10
101/101 - 0s - 246ms/epoch - 2ms/step
Epoch 2/10
101/101 - 0s - 237ms/epoch - 2ms/step
Epoch 3/10
101/101 - 0s - 227ms/epoch - 2ms/step
Epoch 4/10
101/101 - 0s - 224ms/epoch - 2ms/step
Epoch 5/10
101/101 - 0s - 250ms/epoch - 2ms/step
Epoch 6/10
101/101 - 0s - 247ms/epoch - 2ms/step
Epoch 7/10
101/101 - 0s - 224ms/epoch - 2ms/step
Epoch 8/10
101/101 - 0s - 240ms/epoch - 2ms/step
Epoch 9/10
101/101 - 0s - 274ms/epoch - 3ms/step
Epoch 10/10
101/101 - 0s - 261ms/epoch - 3ms/step
Epoch 1/10
101/101 - 0s - 268ms/epoch - 3ms/step
Epoch 2/10
101/101 - 0s - 268ms/epoch - 3ms/step
Epoch 3/10
101/101 - 0s - 266ms/epoch - 3ms/step
Epoch 4/10
101/101 - 0s - 266ms/epoch - 3ms/step
Epoch 5/10
101/101 - 0s - 281ms/epoch - 3ms/step
Epoch 6/10
101/101 - 0s - 270ms/epoch - 3ms/step
Epoch 7/10
101/101 - 0s - 263ms/epoch - 3ms/step
Epoch 8/10
101/101 - 0s - 251ms/epoch - 2ms/step
Epoch 9/10
101/101 - 0s - 260ms/epoch - 3ms/step
Epoch 10/10
101/101 - 0s - 271ms/epoch - 3ms/step
1 loop, best of 5: 3.02 s per loop

As you can see, model.fit() now runs significantly faster than it did before implementing our performance enhancements.

Conclusion

The keras.Model class contains a encapsulates set of functionality related to training. Due to this, the lifecycle of the keras.Model class is significantly complex.

The SimplifiedModel class we implemented shows how the core functionality of the keras.Model works, while still remaining terse and readable. while the SimplifiedModel class is missing a large portion of the true keras.Model class's functionality, it is still as useful starting point for implementing custom training loops that work with TensorFlow distribution strategies.

A forkable template using the SimplifiedModel class is available at https://github.com/lukewood/ModelWalkthrough.

Owner
Luke Wood
Keras team member & Machine Learning researcher @ Google, UCSD Ph.D student
Luke Wood
Fast, general, and tested differentiable structured prediction in PyTorch

Fast, general, and tested differentiable structured prediction in PyTorch

HNLP 1.1k Dec 16, 2022
Algo-burn - Script to configure an Algorand address as a "burn" address for one or more ASA tokens

Algorand Burn Address This is a simple script to illustrate how a "burn address"

GSD 5 May 10, 2022
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

AyseBuyukcelik 2 Jan 26, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
🔮 A refreshing functional take on deep learning, compatible with your favorite libraries

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries From the makers of spaCy, Prodigy and FastAPI Thinc is a

Explosion 2.6k Dec 30, 2022
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur

Nicklas Hansen 101 Nov 01, 2022
Crawl & visualize ICLR papers and reviews

Crawl and Visualize ICLR 2022 OpenReview Data Descriptions This Jupyter Notebook contains the data crawled from ICLR 2022 OpenReview webpages and thei

Federico Berto 75 Dec 05, 2022
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil

3.4k Jan 07, 2023
Trainable Bilateral Filter Layer (PyTorch)

Trainable Bilateral Filter Layer (PyTorch) This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range

FabianWagner 26 Dec 25, 2022
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
Yoga - Yoga asana classifier for python

Yoga Asana Classifier Description Hi welcome to my new deep learning project "Yo

Programminghut 35 Dec 12, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.

appearance-scanner About This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neura

Xiaohe Ma 14 Oct 18, 2022
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022