Keras Model Implementation Walkthrough

Overview

Keras Model Implementation Walkthrough

This guide has a companion blog post.

The Keras Model class is one of the centerpieces of the framework. It encapsulates metric tracking, callbacks, distribution, training loops, various input types, and a wide variety of other training related behavior. This has led to the Model class containing a large volume of code that can be intimidating to sift through.

This guide walks through a simplified model implementation in order to help you understand what model does under the hood. After following along with this guide you will understand how the keras model class achieves the behavior listed above.

The SimplifiedModel can also serve as a starting point for those looking to implement custom models or training loops. A forkable template using the SimplifiedModel class be found on my github at https://github.com/lukewood/ModelWalkthrough.

For the sake of brevity, the class written in this guide subclasses keras.layers.Layer to leverage some helper functions, such as Keras' __call__ implementation.

Core Implementation

Let's create a basic implementation that supports compile(), fit(), predict(), and eval() before we introduce distribution strategy, metric tracking, callbacks, and other features.

Note that the SimplifiedModel class operates as a keras.Model subclass, overriding the call() method to produce predictions.

import tensorflow as tf
import tensorflow.keras as keras
import tensorflow.keras.optimizers as optimizers

class SimplifiedModel(keras.layers.Layer):
  """SimplifiedModel is a stripped down barebones version of keras.Model."""

  def __init__(self, *args, **kwargs):
    super(SimplifiedModel, self).__init__(*args, **kwargs)
    self.dense = keras.layers.Dense(1)
    self.distribute_strategy = tf.distribute.get_strategy()
  
  def compile(self,
              optimizer='rmsprop',
              loss=None,
              metrics=None,
              loss_weights=None):
    with self.distribute_strategy.scope():
      self.optimizer = optimizers.get(optimizer)
      self.loss = loss
      self.metrics_list = metrics if isinstance(metrics, list) else [metrics]

  def call(self, inputs):
    return self.dense(inputs)

  def predict_step(self, x):
    return self(x, training=False)

  def train_step(self, data):
    x, y = data
    # Run forward pass.
    with tf.GradientTape() as tape:
      y_pred = self(x, training=True)
      loss = self.loss(y, y_pred)
      for extra_loss in self.losses:
        loss += scale_loss_for_distribution(extra_loss)

    self.optimizer.minimize(loss, self.trainable_variables, tape=tape)

    return_metrics = {'loss': loss}
    for metric in self.metrics_list:
      metric.update_state(y, y_pred, None)
      result = metric.result()
      if isinstance(result, dict):
        return_metrics.update(result)
      else:
        return_metrics[metric.name] = result
    return return_metrics

  def fit(self, dataset: tf.data.Dataset, epochs=1, verbose=1):
    """This simplified version of fit only accepts a TensorFlow dataset.

    Args:
      dataset: tf.data.Dataset, must yield a tuple of inputs and a one hot
        encoded vector containing labels
      epochs: number of passes to perform over the verbosity
      verbose: verbosity of logging during fit
    """
    for epoch in range(epochs):
      for batch in dataset:
        metrics = self.train_step(batch)
        metric_str = ', '.join(
            [f'{metric_name}: {val}' for metric_name, val in metrics.items()])
        # Minimal progress logging implementation
        print(f'\repoch: ({epoch+1}/{epochs}), {metric_str}', end='')
    print()

  def test_step(self, x, y):
    y_pred = self(x, training=False)
    loss = self.loss(y, y_pred)
    for extra_loss in self.losses:
      loss += scale_loss_for_distribution(extra_loss)

    return_metrics = {
        'loss': loss,
    }

    for metric in self.metrics_list:
      metric.update_state(y, y_pred, None)
      result = metric.result()
      if isinstance(result, dict):
        return_metrics.update(result)
      else:
        return_metrics[metric.name] = result
    return return_metrics

  def evaluate(self, dataset):
    self.reset_metrics()
    metrics_aggregate = []
    for xs, ys in dataset:
      self.reset_metrics()
      metrics_aggregate.append(self.test_step(xs, ys))

    if not metrics_aggregate:
      raise ValueError('dataset must contain at least one batch of samples.  '
                       f'Received: {dataset}')

    result = {}
    for k in metrics_aggregate[0]:
      result[k] = 0.

    for metric_iter in metrics_aggregate:
      for k, v in metric_iter.items():
        result[k] += v / len(metrics_aggregate)
    return result

  def predict(self, dataset):
    result = []
    for xs in dataset:
      result.append(self(xs, training=False))
    return tf.concat(result, axis=0)

  def reset_metrics(self):
    for metric in self.metrics_list:
      metric.reset_state()

When you first construct a model, it exists in an uncompiled state. In this state the optimizer, compiled metrics, and loss have not yet been created. The compile() method creates the optimizer, takes a loss function, and creates a reference to a list of metrics. These are all later used in training.

train_step, predict_step, and eval_step all contain the logic to perform a single step of their corresponding methods: fit(), predict(), and evaluate() respectively. Note that while predict_step() simply invokes call, train_step() and eval_step() track loss and metrics.

The simplified model class expects a tf.data.Dataset as an input to fit(), predict(), and evaluate(). The model offloads the batching behavior to the dataset. To use the model, you'd do something like this:

import numpy as np
import tensorflow.keras.losses as losses

model = SimplifiedModel()

x, y = np.zeros((1000, 10)), np.ones((1000, 1))
ds = tf.data.Dataset.from_tensor_slices((x, y))
# Our model expects the dataset to be batched
ds = ds.batch(10)

ds_test = tf.data.Dataset.from_tensor_slices((x))
ds_test = ds_test.batch(10)

model.compile('sgd', 
              loss=losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.SUM), 
              metrics=[tf.keras.metrics.MeanAbsolutePercentageError()]
)
model.build(input_shape=(None, 10))
metrics = model.evaluate(ds)
print('Metrics Before Fit:', metrics)

model.fit(ds, epochs=10, verbose=2)

metrics = model.evaluate(ds)
print('Metrics After Fit:', metrics)
Metrics Before Fit: {'loss': 
   
    , 'mean_absolute_percentage_error': 
    
     }
epoch: (10/10), loss: 1.4210854715202004e-13, mean_absolute_percentage_error: 0.5994006395339966
Metrics After Fit: {'loss': 
     
      , 'mean_absolute_percentage_error': 
      
       }

      
     
    
   

This model class implements our expected behavior, but it's missing some critical logic that keras.Model implements.

Perhaps most notably, this model does not support distribution.

Batched Execution, Compiled train_step()

Currently we are executing our train_step() calls one at a time, the train_step() function is not a compiled tf.function, and the model does not work the TensorFlow distribution strategies. In this section we will implement all of these performance enhancements and net massive performance gains.

First, we begin by wrapping train_step() in a compiled function:

class SimplifiedModel(keras.Model):
  # ... 
  def make_train_function(self):
    if self.train_function:
      return self.train_function

    def step_function(model, iterator):

      def run_step(data):
        outputs = model.train_step(data)
        model._train_counter.assign_add(1)  # pylint: disable=protected-access
        return outputs

      data = next(iterator)
      outputs = model.distribute_strategy.run(run_step, args=(data,))
      return model.distribute_strategy.unwrap(outputs)[0]

    def train_function(iterator):
      """Runs a training execution with multiple steps."""
      # Autograph cannot infer the return type of undeclared non-Tensor
      # variables from inside loops. The limitations documentation explains this
      # https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/g3doc/reference/limitations.md
      names = [m.name for m in self.metrics_list] + ['loss']
      outputs = dict.fromkeys(names, 0.)
      for _ in tf.range(self.steps_per_execution):
        outputs = step_function(self, iterator)
      return outputs

    train_function = tf.function(train_function, experimental_relax_shapes=True)

    # A separate function is needed to prevent self-referential
    # infinitely-recursive closures
    cluster_train_function = None
    if self._cluster_coordinator:
      # pylint: disable=g-long-lambda
      cluster_train_function = lambda it: self._cluster_coordinator.schedule(
          train_function, args=(it,))

    self.train_function = cluster_train_function or train_function
    return self.train_function

This function also runs the train_step() function using the model's provided distribution strategy.

Next, we need to update our fit() method to utilize this new train function:

  def fit(self, dataset: tf.data.Dataset, epochs=1, verbose=1):
    """This simplified version of fit only accepts a TensorFlow dataset.

    Args:
      dataset: tf.data.Dataset, must yield a tuple of inputs and a one hot
        encoded vector containing labels
      epochs: number of passes to perform over the verbosity
      verbose: verbosity of logging during fit
    """
    if self.distribute_strategy._should_use_with_coordinator:  # pylint: disable=protected-access
      self._cluster_coordinator = tf.distribute.experimental.coordinator.ClusterCoordinator(
          self.distribute_strategy)
      dataset = self._cluster_coordinator.create_per_worker_dataset(dataset)

    for epoch in range(epochs):
        iterator = iter(dataset)
        for step in range(0, steps_per_epoch, self.steps_per_execution):
          try:
            # returns {'loss': loss, 'metric1': val1, ...}
            metrics = self.train_function(iterator)
            metric_str = ', '.join(
              [f'{metric_name}: {val}' for metric_name, val in metrics.items()])
            print(f'\repoch: ({epoch+1}/{epochs}), {metric_str}', end='')
          except tf.errors.OutOfRangeError:
            break
        print()

Next, we will implement computation batching. By batching computation, we reduce the number of context transfers between the computation host and the python side callbacks. In the Keras model class this is done by the steps_per_execution parameter passed to the compile() method.

First, we need to update compile() to include this new parameter:

  def compile(self,
              optimizer='rmsprop',
              loss=None,
              metrics=None,
              loss_weights=None,
              weighted_metrics=None,
              steps_per_execution=1):
    # We need to compile the loss and metrics within the strategy scope
    with self.distribute_strategy.scope():
      self.steps_per_execution = steps_per_execution
      ...

Keras Callbacks

Keras callbacks are objects that perform actions at various stages of training. There is a large library of existing callbacks to handle things like:

  • Write TensorBoard logs after every batch of training to monitor your metrics
  • Periodically save your model to disk
  • Do early stopping
  • Get a view on internal states and statistics of a model during training
  • ...and more

You can read more about callbacks here: https://keras.io/api/callbacks/

Let's integrate Keras callbacks into our SimplifiedModel class.

In order to do so, we will need to add a callbacks parameter to our fit() method. Additionally, we will wrap the callbacks into a Keras CallbackList:

  def fit(
      self,
      dataset,
      epochs=1,
      verbose=1,
      steps_per_epoch=sys.maxsize,  # default to max to iterate entire dataset
      callbacks=None):
    """This simplified version of fit only accepts a TensorFlow dataset.

    Args:
      dataset: tf.data.Dataset, must yield a tuple of inputs and a one hot
        encoded vector containing labels
      epochs: number of passes to perform over the verbosity
      verbose: verbosity of logging during fit
      steps_per_epoch: number of steps that counts as an epoch, useful with
        endless datasets.  When using a finite dataset, leave as sys.maxsize.
      callbacks: list of Keras callbacks
    """
    callbacks = callbacks_module.CallbackList(
        callbacks,
        add_history=True,
        add_progbar=verbose != 0,
        model=self,
        verbose=verbose,
        epochs=epochs)

    dataset = self.distribute_strategy.experimental_distribute_dataset(dataset)

    if self.distribute_strategy._should_use_with_coordinator:  # pylint: disable=protected-access
      self._cluster_coordinator = tf.distribute.experimental.coordinator.ClusterCoordinator(
          self.distribute_strategy)
      dataset = self._cluster_coordinator.create_per_worker_dataset(dataset)

    self.make_train_function()
    self._train_counter.assign(0)
    callbacks.on_train_begin()
    for epoch in range(epochs):
      iterator = iter(dataset)
      callbacks.on_epoch_begin(epoch)
      for step in range(0, steps_per_epoch, self.steps_per_execution):
        callbacks.on_train_batch_begin(step)
        try:
          # returns {'loss': loss, 'metric1': val1, ...}
          unused_metrics = self.train_function(iterator)
        except tf.errors.OutOfRangeError:
          break
        callbacks.on_train_batch_end(step)
      callbacks.on_epoch_end(epoch, None)

We can now pass any Keras callbacks to fit() and have it behave as expected. Additionally, we now get the Keras progress bar when running fit.

Final Usage, Recap

The final code for the SimplifiedModel class is available below:

"""SimplifiedModel is a barebones Keras model class.

The intended use of this class is for end users to fork this class and replace
`compile()`, `fit()` and `predict()` with their own logic.
"""
import sys

import tensorflow as tf


class SimplifiedModel(tf.keras.layers.Layer):
  """SimplifiedModel is a stripped down barebones version of keras.Model."""
  
  def __init__(self, *args, **kwargs):
    super(SimplifiedModel, self).__init__(*args, **kwargs)
    self.dense = tf.keras.layers.Dense(1)
    self.distribute_strategy = tf.distribute.get_strategy()
    agg = tf.VariableAggregation.ONLY_FIRST_REPLICA
    self._train_counter = tf.Variable(0, dtype='int64', aggregation=agg, trainable=False)
    self._cluster_coordinator = None
    if self.distribute_strategy._should_use_with_coordinator:
      self._cluster_coordinator = tf.distribute.experimental.coordinator.ClusterCoordinator(
          self.distribute_strategy)

  def compile(self,
              optimizer='rmsprop',
              loss=None,
              metrics=None,
              loss_weights=None,
              weighted_metrics=None,
              steps_per_execution=1):
    # We need to compile the loss and metrics within the strategy scope
    with self.distribute_strategy.scope():
      self.optimizer = optimizers.get(optimizer)
      self.loss = loss
      self.metrics_list = metrics if isinstance(metrics, list) else [metrics]
      self.steps_per_execution = steps_per_execution
      self.train_function = None
      self._is_compiled = True

  def call(self, inputs):
    return self.dense(inputs)

  def predict_step(self, x):
    return self(x, training=False)

  def train_step(self, data):
    x, y = data
    # Run forward pass.
    with tf.GradientTape() as tape:
      y_pred = self(x, training=True)
      loss = self.loss(y, y_pred)
      for extra_loss in self.losses:
        loss += scale_loss_for_distribution(extra_loss)

    # Run backwards pass.
    self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
    # Collect metrics to return
    return_metrics = {'loss': loss}
    for metric in self.metrics:
      metric.update_state(y, y_pred, None)
      result = metric.result()
      if isinstance(result, dict):
        return_metrics.update(result)
      else:
        return_metrics[metric.name] = result
    return return_metrics

  def fit(
      self,
      dataset,
      epochs=1,
      verbose=1,
      steps_per_epoch=sys.maxsize,  # default to max to iterate entire dataset
      callbacks=None):
    """This simplified version of fit only accepts a TensorFlow dataset.

    Args:
      dataset: tf.data.Dataset, must yield a tuple of inputs and a one hot
        encoded vector containing labels
      epochs: number of passes to perform over the verbosity
      verbose: verbosity of logging during fit
      steps_per_epoch: number of steps that counts as an epoch, useful with
        endless datasets.  When using a finite dataset, leave as sys.maxsize.
      callbacks: list of Keras callbacks
    """
    callbacks = tf.keras.callbacks.CallbackList(
        callbacks,
        add_history=True,
        add_progbar=verbose != 0,
        model=self,
        verbose=verbose,
        epochs=epochs)

    dataset = self.distribute_strategy.experimental_distribute_dataset(dataset)

    if self.distribute_strategy._should_use_with_coordinator:  # pylint: disable=protected-access
      self._cluster_coordinator = tf.distribute.experimental.coordinator.ClusterCoordinator(
          self.distribute_strategy)
      dataset = self._cluster_coordinator.create_per_worker_dataset(dataset)

    self.make_train_function()
    self._train_counter.assign(0)
    callbacks.on_train_begin()
    for epoch in range(epochs):
      iterator = iter(dataset)
      callbacks.on_epoch_begin(epoch)
      for step in range(0, steps_per_epoch, self.steps_per_execution):
        callbacks.on_train_batch_begin(step)
        try:
          # returns {'loss': loss, 'metric1': val1, ...}
          unused_metrics = self.train_function(iterator)
        except tf.errors.OutOfRangeError:
          break
        callbacks.on_train_batch_end(step)
      callbacks.on_epoch_end(epoch, None)

  def make_train_function(self):
    if self.train_function:
      return self.train_function

    def step_function(model, iterator):

      def run_step(data):
        outputs = model.train_step(data)
        model._train_counter.assign_add(1)  # pylint: disable=protected-access
        return outputs

      data = next(iterator)
      outputs = model.distribute_strategy.run(run_step, args=(data,))
      return model.distribute_strategy.unwrap(outputs)[0]

    def train_function(iterator):
      """Runs a training execution with multiple steps."""
      # Autograph cannot infer the return type of undeclared non-Tensor
      # variables from inside loops. The limitations documentation explains this
      # https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/g3doc/reference/limitations.md
      names = [m.name for m in self.metrics] + ['loss']
      outputs = dict.fromkeys(names, 0.)
      for _ in tf.range(self.steps_per_execution):
        outputs = step_function(self, iterator)
      return outputs

    train_function = tf.function(train_function, experimental_relax_shapes=True)

    # A separate function is needed to prevent self-referential
    # infinitely-recursive closures
    cluster_train_function = None
    if self._cluster_coordinator:
      # pylint: disable=g-long-lambda
      cluster_train_function = lambda it: self._cluster_coordinator.schedule(
          train_function, args=(it,))

    self.train_function = cluster_train_function or train_function
    return self.train_function

  def test_step(self, x, y):
    y_pred = self(x, training=False)
    loss = self.loss(y, y_pred)
    for extra_loss in self.losses:
      loss += scale_loss_for_distribution(extra_loss)

    return_metrics = {
        'loss': loss,
    }

    for metric in self.metrics:
      metric.update_state(y, y_pred, None)
      result = metric.result()
      if isinstance(result, dict):
        return_metrics.update(result)
      else:
        return_metrics[metric.name] = result
    return return_metrics

  def evaluate(self, dataset):
    self.reset_metrics()
    metrics_aggregate = []
    for xs, ys in dataset:
      self.reset_metrics()
      metrics_aggregate.append(self.test_step(xs, ys))

    if not metrics_aggregate:
      raise ValueError('dataset must contain at least one batch of samples.  '
                       f'Received: {dataset}')

    result = {}
    for k in metrics_aggregate[0]:
      result[k] = 0.

    for metric_iter in metrics_aggregate:
      for k, v in metric_iter.items():
        result[k] += v / len(metrics_aggregate)
    return result

  def predict(self, dataset):
    result = []
    for xs in dataset:
      result.append(self(xs, training=False))
    return tf.concat(result, axis=0)

  def reset_metrics(self):
    for metric in self.metrics_list:
      metric.reset_state()

Below is an example use of the SimplifiedModel class:

import numpy as np
import tensorflow.keras.losses as losses

try:
  strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0")
  print("Using OneDeviceStrategy")
except:
  strategy = tf.distribute.get_strategy()
  print("Using", strategy)

# Make sure to create all `tf.Variable`s under the `scope`.
with strategy.scope():
  model = SimplifiedModel()

  x, y = np.zeros((1000, 10)), np.ones((1000, 1))
  ds = tf.data.Dataset.from_tensor_slices((x, y))
  # Our model expects the dataset to be batched
  ds = ds.batch(10)

  ds_test = tf.data.Dataset.from_tensor_slices((x))
  ds_test = ds_test.batch(10)

  model.compile('sgd',
    loss=losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.SUM),
    metrics=[tf.keras.metrics.MeanAbsolutePercentageError()],
    steps_per_execution=5
  )
  metrics = model.evaluate(ds)
  print('Metrics Before Fit:', metrics)

  model.fit(ds, epochs=10, verbose=2)

  # we can go ahead and predict some values
  y_pred = model.predict(ds_test)
  print('Predictions Shape:', y_pred.shape)

  metrics = model.evaluate(ds)
  print('Metrics After:', metrics)
Using OneDeviceStrategy
Metrics Before Fit: {'loss': 
   
    , 'mean_absolute_percentage_error': 
    
     }
Epoch 1/10
101/101 - 1s - 538ms/epoch - 5ms/step
Epoch 2/10
101/101 - 0s - 214ms/epoch - 2ms/step
Epoch 3/10
101/101 - 0s - 234ms/epoch - 2ms/step
Epoch 4/10
101/101 - 0s - 223ms/epoch - 2ms/step
Epoch 5/10
101/101 - 0s - 221ms/epoch - 2ms/step
Epoch 6/10
101/101 - 0s - 223ms/epoch - 2ms/step
Epoch 7/10
101/101 - 0s - 220ms/epoch - 2ms/step
Epoch 8/10
101/101 - 0s - 213ms/epoch - 2ms/step
Epoch 9/10
101/101 - 0s - 248ms/epoch - 2ms/step
Epoch 10/10
101/101 - 0s - 251ms/epoch - 2ms/step
Predictions Shape: (1000, 1)
Metrics After: {'loss': 
     
      , 'mean_absolute_percentage_error': 
      
       }

      
     
    
   
%%timeit
model.fit(ds, epochs=10, verbose=2)
Epoch 1/10
101/101 - 0s - 482ms/epoch - 5ms/step
Epoch 2/10
101/101 - 0s - 276ms/epoch - 3ms/step
Epoch 3/10
101/101 - 0s - 255ms/epoch - 3ms/step
Epoch 4/10
101/101 - 0s - 224ms/epoch - 2ms/step
Epoch 5/10
101/101 - 0s - 234ms/epoch - 2ms/step
Epoch 6/10
101/101 - 0s - 221ms/epoch - 2ms/step
Epoch 7/10
101/101 - 0s - 249ms/epoch - 2ms/step
Epoch 8/10
101/101 - 0s - 244ms/epoch - 2ms/step
Epoch 9/10
101/101 - 0s - 240ms/epoch - 2ms/step
Epoch 10/10
101/101 - 0s - 245ms/epoch - 2ms/step
Epoch 1/10
101/101 - 0s - 219ms/epoch - 2ms/step
Epoch 2/10
101/101 - 0s - 225ms/epoch - 2ms/step
Epoch 3/10
101/101 - 0s - 243ms/epoch - 2ms/step
Epoch 4/10
101/101 - 0s - 222ms/epoch - 2ms/step
Epoch 5/10
101/101 - 0s - 225ms/epoch - 2ms/step
Epoch 6/10
101/101 - 0s - 280ms/epoch - 3ms/step
Epoch 7/10
101/101 - 0s - 272ms/epoch - 3ms/step
Epoch 8/10
101/101 - 0s - 272ms/epoch - 3ms/step
Epoch 9/10
101/101 - 0s - 262ms/epoch - 3ms/step
Epoch 10/10
101/101 - 0s - 244ms/epoch - 2ms/step
Epoch 1/10
101/101 - 0s - 229ms/epoch - 2ms/step
Epoch 2/10
101/101 - 0s - 278ms/epoch - 3ms/step
Epoch 3/10
101/101 - 0s - 260ms/epoch - 3ms/step
Epoch 4/10
101/101 - 0s - 278ms/epoch - 3ms/step
Epoch 5/10
101/101 - 0s - 270ms/epoch - 3ms/step
Epoch 6/10
101/101 - 0s - 249ms/epoch - 2ms/step
Epoch 7/10
101/101 - 0s - 244ms/epoch - 2ms/step
Epoch 8/10
101/101 - 0s - 272ms/epoch - 3ms/step
Epoch 9/10
101/101 - 0s - 269ms/epoch - 3ms/step
Epoch 10/10
101/101 - 0s - 225ms/epoch - 2ms/step
Epoch 1/10
101/101 - 0s - 240ms/epoch - 2ms/step
Epoch 2/10
101/101 - 0s - 275ms/epoch - 3ms/step
Epoch 3/10
101/101 - 0s - 233ms/epoch - 2ms/step
Epoch 4/10
101/101 - 0s - 225ms/epoch - 2ms/step
Epoch 5/10
101/101 - 0s - 239ms/epoch - 2ms/step
Epoch 6/10
101/101 - 0s - 246ms/epoch - 2ms/step
Epoch 7/10
101/101 - 0s - 227ms/epoch - 2ms/step
Epoch 8/10
101/101 - 0s - 262ms/epoch - 3ms/step
Epoch 9/10
101/101 - 0s - 245ms/epoch - 2ms/step
Epoch 10/10
101/101 - 0s - 230ms/epoch - 2ms/step
Epoch 1/10
101/101 - 0s - 246ms/epoch - 2ms/step
Epoch 2/10
101/101 - 0s - 237ms/epoch - 2ms/step
Epoch 3/10
101/101 - 0s - 227ms/epoch - 2ms/step
Epoch 4/10
101/101 - 0s - 224ms/epoch - 2ms/step
Epoch 5/10
101/101 - 0s - 250ms/epoch - 2ms/step
Epoch 6/10
101/101 - 0s - 247ms/epoch - 2ms/step
Epoch 7/10
101/101 - 0s - 224ms/epoch - 2ms/step
Epoch 8/10
101/101 - 0s - 240ms/epoch - 2ms/step
Epoch 9/10
101/101 - 0s - 274ms/epoch - 3ms/step
Epoch 10/10
101/101 - 0s - 261ms/epoch - 3ms/step
Epoch 1/10
101/101 - 0s - 268ms/epoch - 3ms/step
Epoch 2/10
101/101 - 0s - 268ms/epoch - 3ms/step
Epoch 3/10
101/101 - 0s - 266ms/epoch - 3ms/step
Epoch 4/10
101/101 - 0s - 266ms/epoch - 3ms/step
Epoch 5/10
101/101 - 0s - 281ms/epoch - 3ms/step
Epoch 6/10
101/101 - 0s - 270ms/epoch - 3ms/step
Epoch 7/10
101/101 - 0s - 263ms/epoch - 3ms/step
Epoch 8/10
101/101 - 0s - 251ms/epoch - 2ms/step
Epoch 9/10
101/101 - 0s - 260ms/epoch - 3ms/step
Epoch 10/10
101/101 - 0s - 271ms/epoch - 3ms/step
1 loop, best of 5: 3.02 s per loop

As you can see, model.fit() now runs significantly faster than it did before implementing our performance enhancements.

Conclusion

The keras.Model class contains a encapsulates set of functionality related to training. Due to this, the lifecycle of the keras.Model class is significantly complex.

The SimplifiedModel class we implemented shows how the core functionality of the keras.Model works, while still remaining terse and readable. while the SimplifiedModel class is missing a large portion of the true keras.Model class's functionality, it is still as useful starting point for implementing custom training loops that work with TensorFlow distribution strategies.

A forkable template using the SimplifiedModel class is available at https://github.com/lukewood/ModelWalkthrough.

Owner
Luke Wood
Keras team member & Machine Learning researcher @ Google, UCSD Ph.D student
Luke Wood
Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and shape estimation at the university of Lincoln

PhD_3DPerception Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and s

lelouedec 2 Oct 06, 2022
A chemical analysis of lipophilicities & molecule drawings including ML

A chemical analysis of lipophilicity & molecule drawings including a bit of ML analysis. This is a simple project that includes two Jupyter files (one

Aurimas A. Nausėdas 7 Nov 22, 2022
Stochastic gradient descent with model building

Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th

S. Ilker Birbil 22 Jan 19, 2022
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
Fast Soft Color Segmentation

Fast Soft Color Segmentation

3 Oct 29, 2022
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th

Zekarias Tilahun 24 Jun 21, 2022
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
This is a repo of basic Machine Learning!

Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource

Ekram Asif 53 Dec 31, 2022
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
Python interface for the DIGIT tactile sensor

DIGIT-INTERFACE Python interface for the DIGIT tactile sensor. For updates and discussions please join the #DIGIT channel at the www.touch-sensing.org

Facebook Research 35 Dec 22, 2022
Technical Analysis library in pandas for backtesting algotrading and quantitative analysis

bta-lib - A pandas based Technical Analysis Library bta-lib is pandas based technical analysis library and part of the backtrader family. Links Main P

DRo 393 Dec 20, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

Oliver Hahn 1 Jan 26, 2022
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022