Keras Model Implementation Walkthrough

Overview

Keras Model Implementation Walkthrough

This guide has a companion blog post.

The Keras Model class is one of the centerpieces of the framework. It encapsulates metric tracking, callbacks, distribution, training loops, various input types, and a wide variety of other training related behavior. This has led to the Model class containing a large volume of code that can be intimidating to sift through.

This guide walks through a simplified model implementation in order to help you understand what model does under the hood. After following along with this guide you will understand how the keras model class achieves the behavior listed above.

The SimplifiedModel can also serve as a starting point for those looking to implement custom models or training loops. A forkable template using the SimplifiedModel class be found on my github at https://github.com/lukewood/ModelWalkthrough.

For the sake of brevity, the class written in this guide subclasses keras.layers.Layer to leverage some helper functions, such as Keras' __call__ implementation.

Core Implementation

Let's create a basic implementation that supports compile(), fit(), predict(), and eval() before we introduce distribution strategy, metric tracking, callbacks, and other features.

Note that the SimplifiedModel class operates as a keras.Model subclass, overriding the call() method to produce predictions.

import tensorflow as tf
import tensorflow.keras as keras
import tensorflow.keras.optimizers as optimizers

class SimplifiedModel(keras.layers.Layer):
  """SimplifiedModel is a stripped down barebones version of keras.Model."""

  def __init__(self, *args, **kwargs):
    super(SimplifiedModel, self).__init__(*args, **kwargs)
    self.dense = keras.layers.Dense(1)
    self.distribute_strategy = tf.distribute.get_strategy()
  
  def compile(self,
              optimizer='rmsprop',
              loss=None,
              metrics=None,
              loss_weights=None):
    with self.distribute_strategy.scope():
      self.optimizer = optimizers.get(optimizer)
      self.loss = loss
      self.metrics_list = metrics if isinstance(metrics, list) else [metrics]

  def call(self, inputs):
    return self.dense(inputs)

  def predict_step(self, x):
    return self(x, training=False)

  def train_step(self, data):
    x, y = data
    # Run forward pass.
    with tf.GradientTape() as tape:
      y_pred = self(x, training=True)
      loss = self.loss(y, y_pred)
      for extra_loss in self.losses:
        loss += scale_loss_for_distribution(extra_loss)

    self.optimizer.minimize(loss, self.trainable_variables, tape=tape)

    return_metrics = {'loss': loss}
    for metric in self.metrics_list:
      metric.update_state(y, y_pred, None)
      result = metric.result()
      if isinstance(result, dict):
        return_metrics.update(result)
      else:
        return_metrics[metric.name] = result
    return return_metrics

  def fit(self, dataset: tf.data.Dataset, epochs=1, verbose=1):
    """This simplified version of fit only accepts a TensorFlow dataset.

    Args:
      dataset: tf.data.Dataset, must yield a tuple of inputs and a one hot
        encoded vector containing labels
      epochs: number of passes to perform over the verbosity
      verbose: verbosity of logging during fit
    """
    for epoch in range(epochs):
      for batch in dataset:
        metrics = self.train_step(batch)
        metric_str = ', '.join(
            [f'{metric_name}: {val}' for metric_name, val in metrics.items()])
        # Minimal progress logging implementation
        print(f'\repoch: ({epoch+1}/{epochs}), {metric_str}', end='')
    print()

  def test_step(self, x, y):
    y_pred = self(x, training=False)
    loss = self.loss(y, y_pred)
    for extra_loss in self.losses:
      loss += scale_loss_for_distribution(extra_loss)

    return_metrics = {
        'loss': loss,
    }

    for metric in self.metrics_list:
      metric.update_state(y, y_pred, None)
      result = metric.result()
      if isinstance(result, dict):
        return_metrics.update(result)
      else:
        return_metrics[metric.name] = result
    return return_metrics

  def evaluate(self, dataset):
    self.reset_metrics()
    metrics_aggregate = []
    for xs, ys in dataset:
      self.reset_metrics()
      metrics_aggregate.append(self.test_step(xs, ys))

    if not metrics_aggregate:
      raise ValueError('dataset must contain at least one batch of samples.  '
                       f'Received: {dataset}')

    result = {}
    for k in metrics_aggregate[0]:
      result[k] = 0.

    for metric_iter in metrics_aggregate:
      for k, v in metric_iter.items():
        result[k] += v / len(metrics_aggregate)
    return result

  def predict(self, dataset):
    result = []
    for xs in dataset:
      result.append(self(xs, training=False))
    return tf.concat(result, axis=0)

  def reset_metrics(self):
    for metric in self.metrics_list:
      metric.reset_state()

When you first construct a model, it exists in an uncompiled state. In this state the optimizer, compiled metrics, and loss have not yet been created. The compile() method creates the optimizer, takes a loss function, and creates a reference to a list of metrics. These are all later used in training.

train_step, predict_step, and eval_step all contain the logic to perform a single step of their corresponding methods: fit(), predict(), and evaluate() respectively. Note that while predict_step() simply invokes call, train_step() and eval_step() track loss and metrics.

The simplified model class expects a tf.data.Dataset as an input to fit(), predict(), and evaluate(). The model offloads the batching behavior to the dataset. To use the model, you'd do something like this:

import numpy as np
import tensorflow.keras.losses as losses

model = SimplifiedModel()

x, y = np.zeros((1000, 10)), np.ones((1000, 1))
ds = tf.data.Dataset.from_tensor_slices((x, y))
# Our model expects the dataset to be batched
ds = ds.batch(10)

ds_test = tf.data.Dataset.from_tensor_slices((x))
ds_test = ds_test.batch(10)

model.compile('sgd', 
              loss=losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.SUM), 
              metrics=[tf.keras.metrics.MeanAbsolutePercentageError()]
)
model.build(input_shape=(None, 10))
metrics = model.evaluate(ds)
print('Metrics Before Fit:', metrics)

model.fit(ds, epochs=10, verbose=2)

metrics = model.evaluate(ds)
print('Metrics After Fit:', metrics)
Metrics Before Fit: {'loss': 
   
    , 'mean_absolute_percentage_error': 
    
     }
epoch: (10/10), loss: 1.4210854715202004e-13, mean_absolute_percentage_error: 0.5994006395339966
Metrics After Fit: {'loss': 
     
      , 'mean_absolute_percentage_error': 
      
       }

      
     
    
   

This model class implements our expected behavior, but it's missing some critical logic that keras.Model implements.

Perhaps most notably, this model does not support distribution.

Batched Execution, Compiled train_step()

Currently we are executing our train_step() calls one at a time, the train_step() function is not a compiled tf.function, and the model does not work the TensorFlow distribution strategies. In this section we will implement all of these performance enhancements and net massive performance gains.

First, we begin by wrapping train_step() in a compiled function:

class SimplifiedModel(keras.Model):
  # ... 
  def make_train_function(self):
    if self.train_function:
      return self.train_function

    def step_function(model, iterator):

      def run_step(data):
        outputs = model.train_step(data)
        model._train_counter.assign_add(1)  # pylint: disable=protected-access
        return outputs

      data = next(iterator)
      outputs = model.distribute_strategy.run(run_step, args=(data,))
      return model.distribute_strategy.unwrap(outputs)[0]

    def train_function(iterator):
      """Runs a training execution with multiple steps."""
      # Autograph cannot infer the return type of undeclared non-Tensor
      # variables from inside loops. The limitations documentation explains this
      # https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/g3doc/reference/limitations.md
      names = [m.name for m in self.metrics_list] + ['loss']
      outputs = dict.fromkeys(names, 0.)
      for _ in tf.range(self.steps_per_execution):
        outputs = step_function(self, iterator)
      return outputs

    train_function = tf.function(train_function, experimental_relax_shapes=True)

    # A separate function is needed to prevent self-referential
    # infinitely-recursive closures
    cluster_train_function = None
    if self._cluster_coordinator:
      # pylint: disable=g-long-lambda
      cluster_train_function = lambda it: self._cluster_coordinator.schedule(
          train_function, args=(it,))

    self.train_function = cluster_train_function or train_function
    return self.train_function

This function also runs the train_step() function using the model's provided distribution strategy.

Next, we need to update our fit() method to utilize this new train function:

  def fit(self, dataset: tf.data.Dataset, epochs=1, verbose=1):
    """This simplified version of fit only accepts a TensorFlow dataset.

    Args:
      dataset: tf.data.Dataset, must yield a tuple of inputs and a one hot
        encoded vector containing labels
      epochs: number of passes to perform over the verbosity
      verbose: verbosity of logging during fit
    """
    if self.distribute_strategy._should_use_with_coordinator:  # pylint: disable=protected-access
      self._cluster_coordinator = tf.distribute.experimental.coordinator.ClusterCoordinator(
          self.distribute_strategy)
      dataset = self._cluster_coordinator.create_per_worker_dataset(dataset)

    for epoch in range(epochs):
        iterator = iter(dataset)
        for step in range(0, steps_per_epoch, self.steps_per_execution):
          try:
            # returns {'loss': loss, 'metric1': val1, ...}
            metrics = self.train_function(iterator)
            metric_str = ', '.join(
              [f'{metric_name}: {val}' for metric_name, val in metrics.items()])
            print(f'\repoch: ({epoch+1}/{epochs}), {metric_str}', end='')
          except tf.errors.OutOfRangeError:
            break
        print()

Next, we will implement computation batching. By batching computation, we reduce the number of context transfers between the computation host and the python side callbacks. In the Keras model class this is done by the steps_per_execution parameter passed to the compile() method.

First, we need to update compile() to include this new parameter:

  def compile(self,
              optimizer='rmsprop',
              loss=None,
              metrics=None,
              loss_weights=None,
              weighted_metrics=None,
              steps_per_execution=1):
    # We need to compile the loss and metrics within the strategy scope
    with self.distribute_strategy.scope():
      self.steps_per_execution = steps_per_execution
      ...

Keras Callbacks

Keras callbacks are objects that perform actions at various stages of training. There is a large library of existing callbacks to handle things like:

  • Write TensorBoard logs after every batch of training to monitor your metrics
  • Periodically save your model to disk
  • Do early stopping
  • Get a view on internal states and statistics of a model during training
  • ...and more

You can read more about callbacks here: https://keras.io/api/callbacks/

Let's integrate Keras callbacks into our SimplifiedModel class.

In order to do so, we will need to add a callbacks parameter to our fit() method. Additionally, we will wrap the callbacks into a Keras CallbackList:

  def fit(
      self,
      dataset,
      epochs=1,
      verbose=1,
      steps_per_epoch=sys.maxsize,  # default to max to iterate entire dataset
      callbacks=None):
    """This simplified version of fit only accepts a TensorFlow dataset.

    Args:
      dataset: tf.data.Dataset, must yield a tuple of inputs and a one hot
        encoded vector containing labels
      epochs: number of passes to perform over the verbosity
      verbose: verbosity of logging during fit
      steps_per_epoch: number of steps that counts as an epoch, useful with
        endless datasets.  When using a finite dataset, leave as sys.maxsize.
      callbacks: list of Keras callbacks
    """
    callbacks = callbacks_module.CallbackList(
        callbacks,
        add_history=True,
        add_progbar=verbose != 0,
        model=self,
        verbose=verbose,
        epochs=epochs)

    dataset = self.distribute_strategy.experimental_distribute_dataset(dataset)

    if self.distribute_strategy._should_use_with_coordinator:  # pylint: disable=protected-access
      self._cluster_coordinator = tf.distribute.experimental.coordinator.ClusterCoordinator(
          self.distribute_strategy)
      dataset = self._cluster_coordinator.create_per_worker_dataset(dataset)

    self.make_train_function()
    self._train_counter.assign(0)
    callbacks.on_train_begin()
    for epoch in range(epochs):
      iterator = iter(dataset)
      callbacks.on_epoch_begin(epoch)
      for step in range(0, steps_per_epoch, self.steps_per_execution):
        callbacks.on_train_batch_begin(step)
        try:
          # returns {'loss': loss, 'metric1': val1, ...}
          unused_metrics = self.train_function(iterator)
        except tf.errors.OutOfRangeError:
          break
        callbacks.on_train_batch_end(step)
      callbacks.on_epoch_end(epoch, None)

We can now pass any Keras callbacks to fit() and have it behave as expected. Additionally, we now get the Keras progress bar when running fit.

Final Usage, Recap

The final code for the SimplifiedModel class is available below:

"""SimplifiedModel is a barebones Keras model class.

The intended use of this class is for end users to fork this class and replace
`compile()`, `fit()` and `predict()` with their own logic.
"""
import sys

import tensorflow as tf


class SimplifiedModel(tf.keras.layers.Layer):
  """SimplifiedModel is a stripped down barebones version of keras.Model."""
  
  def __init__(self, *args, **kwargs):
    super(SimplifiedModel, self).__init__(*args, **kwargs)
    self.dense = tf.keras.layers.Dense(1)
    self.distribute_strategy = tf.distribute.get_strategy()
    agg = tf.VariableAggregation.ONLY_FIRST_REPLICA
    self._train_counter = tf.Variable(0, dtype='int64', aggregation=agg, trainable=False)
    self._cluster_coordinator = None
    if self.distribute_strategy._should_use_with_coordinator:
      self._cluster_coordinator = tf.distribute.experimental.coordinator.ClusterCoordinator(
          self.distribute_strategy)

  def compile(self,
              optimizer='rmsprop',
              loss=None,
              metrics=None,
              loss_weights=None,
              weighted_metrics=None,
              steps_per_execution=1):
    # We need to compile the loss and metrics within the strategy scope
    with self.distribute_strategy.scope():
      self.optimizer = optimizers.get(optimizer)
      self.loss = loss
      self.metrics_list = metrics if isinstance(metrics, list) else [metrics]
      self.steps_per_execution = steps_per_execution
      self.train_function = None
      self._is_compiled = True

  def call(self, inputs):
    return self.dense(inputs)

  def predict_step(self, x):
    return self(x, training=False)

  def train_step(self, data):
    x, y = data
    # Run forward pass.
    with tf.GradientTape() as tape:
      y_pred = self(x, training=True)
      loss = self.loss(y, y_pred)
      for extra_loss in self.losses:
        loss += scale_loss_for_distribution(extra_loss)

    # Run backwards pass.
    self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
    # Collect metrics to return
    return_metrics = {'loss': loss}
    for metric in self.metrics:
      metric.update_state(y, y_pred, None)
      result = metric.result()
      if isinstance(result, dict):
        return_metrics.update(result)
      else:
        return_metrics[metric.name] = result
    return return_metrics

  def fit(
      self,
      dataset,
      epochs=1,
      verbose=1,
      steps_per_epoch=sys.maxsize,  # default to max to iterate entire dataset
      callbacks=None):
    """This simplified version of fit only accepts a TensorFlow dataset.

    Args:
      dataset: tf.data.Dataset, must yield a tuple of inputs and a one hot
        encoded vector containing labels
      epochs: number of passes to perform over the verbosity
      verbose: verbosity of logging during fit
      steps_per_epoch: number of steps that counts as an epoch, useful with
        endless datasets.  When using a finite dataset, leave as sys.maxsize.
      callbacks: list of Keras callbacks
    """
    callbacks = tf.keras.callbacks.CallbackList(
        callbacks,
        add_history=True,
        add_progbar=verbose != 0,
        model=self,
        verbose=verbose,
        epochs=epochs)

    dataset = self.distribute_strategy.experimental_distribute_dataset(dataset)

    if self.distribute_strategy._should_use_with_coordinator:  # pylint: disable=protected-access
      self._cluster_coordinator = tf.distribute.experimental.coordinator.ClusterCoordinator(
          self.distribute_strategy)
      dataset = self._cluster_coordinator.create_per_worker_dataset(dataset)

    self.make_train_function()
    self._train_counter.assign(0)
    callbacks.on_train_begin()
    for epoch in range(epochs):
      iterator = iter(dataset)
      callbacks.on_epoch_begin(epoch)
      for step in range(0, steps_per_epoch, self.steps_per_execution):
        callbacks.on_train_batch_begin(step)
        try:
          # returns {'loss': loss, 'metric1': val1, ...}
          unused_metrics = self.train_function(iterator)
        except tf.errors.OutOfRangeError:
          break
        callbacks.on_train_batch_end(step)
      callbacks.on_epoch_end(epoch, None)

  def make_train_function(self):
    if self.train_function:
      return self.train_function

    def step_function(model, iterator):

      def run_step(data):
        outputs = model.train_step(data)
        model._train_counter.assign_add(1)  # pylint: disable=protected-access
        return outputs

      data = next(iterator)
      outputs = model.distribute_strategy.run(run_step, args=(data,))
      return model.distribute_strategy.unwrap(outputs)[0]

    def train_function(iterator):
      """Runs a training execution with multiple steps."""
      # Autograph cannot infer the return type of undeclared non-Tensor
      # variables from inside loops. The limitations documentation explains this
      # https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/g3doc/reference/limitations.md
      names = [m.name for m in self.metrics] + ['loss']
      outputs = dict.fromkeys(names, 0.)
      for _ in tf.range(self.steps_per_execution):
        outputs = step_function(self, iterator)
      return outputs

    train_function = tf.function(train_function, experimental_relax_shapes=True)

    # A separate function is needed to prevent self-referential
    # infinitely-recursive closures
    cluster_train_function = None
    if self._cluster_coordinator:
      # pylint: disable=g-long-lambda
      cluster_train_function = lambda it: self._cluster_coordinator.schedule(
          train_function, args=(it,))

    self.train_function = cluster_train_function or train_function
    return self.train_function

  def test_step(self, x, y):
    y_pred = self(x, training=False)
    loss = self.loss(y, y_pred)
    for extra_loss in self.losses:
      loss += scale_loss_for_distribution(extra_loss)

    return_metrics = {
        'loss': loss,
    }

    for metric in self.metrics:
      metric.update_state(y, y_pred, None)
      result = metric.result()
      if isinstance(result, dict):
        return_metrics.update(result)
      else:
        return_metrics[metric.name] = result
    return return_metrics

  def evaluate(self, dataset):
    self.reset_metrics()
    metrics_aggregate = []
    for xs, ys in dataset:
      self.reset_metrics()
      metrics_aggregate.append(self.test_step(xs, ys))

    if not metrics_aggregate:
      raise ValueError('dataset must contain at least one batch of samples.  '
                       f'Received: {dataset}')

    result = {}
    for k in metrics_aggregate[0]:
      result[k] = 0.

    for metric_iter in metrics_aggregate:
      for k, v in metric_iter.items():
        result[k] += v / len(metrics_aggregate)
    return result

  def predict(self, dataset):
    result = []
    for xs in dataset:
      result.append(self(xs, training=False))
    return tf.concat(result, axis=0)

  def reset_metrics(self):
    for metric in self.metrics_list:
      metric.reset_state()

Below is an example use of the SimplifiedModel class:

import numpy as np
import tensorflow.keras.losses as losses

try:
  strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0")
  print("Using OneDeviceStrategy")
except:
  strategy = tf.distribute.get_strategy()
  print("Using", strategy)

# Make sure to create all `tf.Variable`s under the `scope`.
with strategy.scope():
  model = SimplifiedModel()

  x, y = np.zeros((1000, 10)), np.ones((1000, 1))
  ds = tf.data.Dataset.from_tensor_slices((x, y))
  # Our model expects the dataset to be batched
  ds = ds.batch(10)

  ds_test = tf.data.Dataset.from_tensor_slices((x))
  ds_test = ds_test.batch(10)

  model.compile('sgd',
    loss=losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.SUM),
    metrics=[tf.keras.metrics.MeanAbsolutePercentageError()],
    steps_per_execution=5
  )
  metrics = model.evaluate(ds)
  print('Metrics Before Fit:', metrics)

  model.fit(ds, epochs=10, verbose=2)

  # we can go ahead and predict some values
  y_pred = model.predict(ds_test)
  print('Predictions Shape:', y_pred.shape)

  metrics = model.evaluate(ds)
  print('Metrics After:', metrics)
Using OneDeviceStrategy
Metrics Before Fit: {'loss': 
   
    , 'mean_absolute_percentage_error': 
    
     }
Epoch 1/10
101/101 - 1s - 538ms/epoch - 5ms/step
Epoch 2/10
101/101 - 0s - 214ms/epoch - 2ms/step
Epoch 3/10
101/101 - 0s - 234ms/epoch - 2ms/step
Epoch 4/10
101/101 - 0s - 223ms/epoch - 2ms/step
Epoch 5/10
101/101 - 0s - 221ms/epoch - 2ms/step
Epoch 6/10
101/101 - 0s - 223ms/epoch - 2ms/step
Epoch 7/10
101/101 - 0s - 220ms/epoch - 2ms/step
Epoch 8/10
101/101 - 0s - 213ms/epoch - 2ms/step
Epoch 9/10
101/101 - 0s - 248ms/epoch - 2ms/step
Epoch 10/10
101/101 - 0s - 251ms/epoch - 2ms/step
Predictions Shape: (1000, 1)
Metrics After: {'loss': 
     
      , 'mean_absolute_percentage_error': 
      
       }

      
     
    
   
%%timeit
model.fit(ds, epochs=10, verbose=2)
Epoch 1/10
101/101 - 0s - 482ms/epoch - 5ms/step
Epoch 2/10
101/101 - 0s - 276ms/epoch - 3ms/step
Epoch 3/10
101/101 - 0s - 255ms/epoch - 3ms/step
Epoch 4/10
101/101 - 0s - 224ms/epoch - 2ms/step
Epoch 5/10
101/101 - 0s - 234ms/epoch - 2ms/step
Epoch 6/10
101/101 - 0s - 221ms/epoch - 2ms/step
Epoch 7/10
101/101 - 0s - 249ms/epoch - 2ms/step
Epoch 8/10
101/101 - 0s - 244ms/epoch - 2ms/step
Epoch 9/10
101/101 - 0s - 240ms/epoch - 2ms/step
Epoch 10/10
101/101 - 0s - 245ms/epoch - 2ms/step
Epoch 1/10
101/101 - 0s - 219ms/epoch - 2ms/step
Epoch 2/10
101/101 - 0s - 225ms/epoch - 2ms/step
Epoch 3/10
101/101 - 0s - 243ms/epoch - 2ms/step
Epoch 4/10
101/101 - 0s - 222ms/epoch - 2ms/step
Epoch 5/10
101/101 - 0s - 225ms/epoch - 2ms/step
Epoch 6/10
101/101 - 0s - 280ms/epoch - 3ms/step
Epoch 7/10
101/101 - 0s - 272ms/epoch - 3ms/step
Epoch 8/10
101/101 - 0s - 272ms/epoch - 3ms/step
Epoch 9/10
101/101 - 0s - 262ms/epoch - 3ms/step
Epoch 10/10
101/101 - 0s - 244ms/epoch - 2ms/step
Epoch 1/10
101/101 - 0s - 229ms/epoch - 2ms/step
Epoch 2/10
101/101 - 0s - 278ms/epoch - 3ms/step
Epoch 3/10
101/101 - 0s - 260ms/epoch - 3ms/step
Epoch 4/10
101/101 - 0s - 278ms/epoch - 3ms/step
Epoch 5/10
101/101 - 0s - 270ms/epoch - 3ms/step
Epoch 6/10
101/101 - 0s - 249ms/epoch - 2ms/step
Epoch 7/10
101/101 - 0s - 244ms/epoch - 2ms/step
Epoch 8/10
101/101 - 0s - 272ms/epoch - 3ms/step
Epoch 9/10
101/101 - 0s - 269ms/epoch - 3ms/step
Epoch 10/10
101/101 - 0s - 225ms/epoch - 2ms/step
Epoch 1/10
101/101 - 0s - 240ms/epoch - 2ms/step
Epoch 2/10
101/101 - 0s - 275ms/epoch - 3ms/step
Epoch 3/10
101/101 - 0s - 233ms/epoch - 2ms/step
Epoch 4/10
101/101 - 0s - 225ms/epoch - 2ms/step
Epoch 5/10
101/101 - 0s - 239ms/epoch - 2ms/step
Epoch 6/10
101/101 - 0s - 246ms/epoch - 2ms/step
Epoch 7/10
101/101 - 0s - 227ms/epoch - 2ms/step
Epoch 8/10
101/101 - 0s - 262ms/epoch - 3ms/step
Epoch 9/10
101/101 - 0s - 245ms/epoch - 2ms/step
Epoch 10/10
101/101 - 0s - 230ms/epoch - 2ms/step
Epoch 1/10
101/101 - 0s - 246ms/epoch - 2ms/step
Epoch 2/10
101/101 - 0s - 237ms/epoch - 2ms/step
Epoch 3/10
101/101 - 0s - 227ms/epoch - 2ms/step
Epoch 4/10
101/101 - 0s - 224ms/epoch - 2ms/step
Epoch 5/10
101/101 - 0s - 250ms/epoch - 2ms/step
Epoch 6/10
101/101 - 0s - 247ms/epoch - 2ms/step
Epoch 7/10
101/101 - 0s - 224ms/epoch - 2ms/step
Epoch 8/10
101/101 - 0s - 240ms/epoch - 2ms/step
Epoch 9/10
101/101 - 0s - 274ms/epoch - 3ms/step
Epoch 10/10
101/101 - 0s - 261ms/epoch - 3ms/step
Epoch 1/10
101/101 - 0s - 268ms/epoch - 3ms/step
Epoch 2/10
101/101 - 0s - 268ms/epoch - 3ms/step
Epoch 3/10
101/101 - 0s - 266ms/epoch - 3ms/step
Epoch 4/10
101/101 - 0s - 266ms/epoch - 3ms/step
Epoch 5/10
101/101 - 0s - 281ms/epoch - 3ms/step
Epoch 6/10
101/101 - 0s - 270ms/epoch - 3ms/step
Epoch 7/10
101/101 - 0s - 263ms/epoch - 3ms/step
Epoch 8/10
101/101 - 0s - 251ms/epoch - 2ms/step
Epoch 9/10
101/101 - 0s - 260ms/epoch - 3ms/step
Epoch 10/10
101/101 - 0s - 271ms/epoch - 3ms/step
1 loop, best of 5: 3.02 s per loop

As you can see, model.fit() now runs significantly faster than it did before implementing our performance enhancements.

Conclusion

The keras.Model class contains a encapsulates set of functionality related to training. Due to this, the lifecycle of the keras.Model class is significantly complex.

The SimplifiedModel class we implemented shows how the core functionality of the keras.Model works, while still remaining terse and readable. while the SimplifiedModel class is missing a large portion of the true keras.Model class's functionality, it is still as useful starting point for implementing custom training loops that work with TensorFlow distribution strategies.

A forkable template using the SimplifiedModel class is available at https://github.com/lukewood/ModelWalkthrough.

Owner
Luke Wood
Keras team member & Machine Learning researcher @ Google, UCSD Ph.D student
Luke Wood
Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing"

ProxyFL Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing" Authors: Shivam Kalra*, Junfeng Wen*, Jess

Layer6 Labs 14 Dec 06, 2022
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
A Lighting Pytorch Framework for Recommendation System, Easy-to-use and Easy-to-extend.

Torch-RecHub A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend. 安装 pip install torch-rechub 主要特性 scikit-learn风格易用

Mincai Lai 67 Jan 04, 2023
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
Config files for my GitHub profile.

Canalyst Candas Data Science Library Name Canalyst Candas Description Built by a former PM / analyst to give anyone with a little bit of Python knowle

Canalyst Candas 13 Jun 24, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

STARS Laboratory 8 Sep 14, 2022
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
NEG loss implemented in pytorch

Pytorch Negative Sampling Loss Negative Sampling Loss implemented in PyTorch. Usage neg_loss = NEG_loss(num_classes, embedding_size) optimizer =

Daniil Gavrilov 123 Sep 13, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

DV Lab 116 Dec 20, 2022
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022
REBEL: Relation Extraction By End-to-end Language generation

REBEL: Relation Extraction By End-to-end Language generation This is the repository for the Findings of EMNLP 2021 paper REBEL: Relation Extraction By

Babelscape 222 Jan 06, 2023
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
ReSSL: Relational Self-Supervised Learning with Weak Augmentation

ReSSL: Relational Self-Supervised Learning with Weak Augmentation This repository contains PyTorch evaluation code, training code and pretrained model

mingkai 45 Oct 25, 2022
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023