Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Overview

Version License repo size Arxiv codebeat badge build badge coverage badge


Little Ball of Fur is a graph sampling extension library for Python.

Please look at the Documentation, relevant Paper, Promo video and External Resources.

Little Ball of Fur consists of methods that can sample from graph structured data. To put it simply it is a Swiss Army knife for graph sampling tasks. First, it includes a large variety of vertex, edge, and exploration sampling techniques. Second, it provides a unified application public interface which makes the application of sampling algorithms trivial for end-users. Implemented methods cover a wide range of networking (Networking, INFOCOM, SIGCOMM) and data mining (KDD, TKDD, ICDE) conferences, workshops, and pieces from prominent journals.


Citing

If you find Little Ball of Fur useful in your research, please consider citing the following paper:

@inproceedings{littleballoffur,
               title={{Little Ball of Fur: A Python Library for Graph Sampling}},
               author={Benedek Rozemberczki and Oliver Kiss and Rik Sarkar},
               year={2020},
               pages = {3133–3140},
               booktitle={Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM '20)},
               organization={ACM},
}

A simple example

Little Ball of Fur makes using modern graph subsampling techniques quite easy (see here for the accompanying tutorial). For example, this is all it takes to use Diffusion Sampling on a Watts-Strogatz graph:

import networkx as nx
from littleballoffur import DiffusionSampler

graph = nx.newman_watts_strogatz_graph(1000, 20, 0.05)

sampler = DiffusionSampler()

new_graph = sampler.sample(graph)

Methods included

In detail, the following sampling methods were implemented.

Node Sampling

Edge Sampling

Exploration Based Sampling

Head over to our documentation to find out more about installation and data handling, a full list of implemented methods, and datasets. For a quick start, check out our examples.

If you notice anything unexpected, please open an issue and let us know. If you are missing a specific method, feel free to open a feature request. We are motivated to constantly make Little Ball of Fur even better.


Installation

Little Ball of Fur can be installed with the following pip command.

$ pip install littleballoffur

As we create new releases frequently, upgrading the package casually might be beneficial.

$ pip install littleballoffur --upgrade

Running examples

As part of the documentation we provide a number of use cases to show how to use various sampling techniques. These can accessed here with detailed explanations.

Besides the case studies we provide synthetic examples for each model. These can be tried out by running the scripts in the examples folder. You can try out the random walk sampling example by running:

$ cd examples
$ python ./exploration_sampling/randomwalk_sampler.py

Running tests

$ python setup.py test

License

Comments
  • change initial num of nodes formula

    change initial num of nodes formula

    to avoid having more initial nodes than the requested final number of nodes (when the final number of nodes requested is much smaller than the graph size).

    opened by bricaud 7
  • Error install dependency networkit==7.1

    Error install dependency networkit==7.1

    I didn't manage to install littleballoffur due to one of its dependency that seems outdated. It didn't work to install networkit==7.1 but I did manage to run its latest version. However, littleballoffur runs on networkit==7.1.

    I am using a Jupyter notebook as an environment and the following system specs: posix Darwin 21.4.0 3.8.12 (default, Mar 17 2022, 14:54:15) [Clang 13.0.0 (clang-1300.0.29.30)]

    The specific error output:

    Collecting networkit==7.1
      Using cached networkit-7.1.tar.gz (3.1 MB)
      Preparing metadata (setup.py) ... error
      error: subprocess-exited-with-error
      
      × python setup.py egg_info did not run successfully.
      │ exit code: 1
      ╰─> [2 lines of output]
          ERROR: No suitable compiler found. Install any of these:  ['g++', 'g++-8', 'g++-7', 'g++-6.1', 'g++-6', 'g++-5.3', 'g++-5.2', 'g++-5.1', 'g++-5', 'g++-4.9', 'g++-4.8', 'clang++', 'clang++-3.8', 'clang++-3.7']
          If using AppleClang, OpenMP might be needed. Install with: 'brew install libomp'
          [end of output]
      
      note: This error originates from a subprocess, and is likely not a problem with pip.
    error: metadata-generation-failed
    
    × Encountered error while generating package metadata.
    ╰─> See above for output.
    
    note: This is an issue with the package mentioned above, not pip.
    hint: See above for details.
    
    

    Please note that: libomp 14.0.0 is already installed and up-to-date.

    Is there some way I could install the library on networkit v10? Thanks a lot!

    opened by CristinBSE 6
  • Node attributes are not copied from original graph

    Node attributes are not copied from original graph

    Breadth and Depth First Search return me subgraphs without correct attributes on nodes/edges. Actually, I found that the dict containing those attributes has been completely deleted in the sampled graph. Is this a known issue? Is the sampler supposed to work in this way?

    opened by jungla88 6
  • Why can't I use the graph imported by nx.read_edgelist()

    Why can't I use the graph imported by nx.read_edgelist()

    graph = nx.read_edgelist("filename", nodetype=int, data=(("Weight", int),))

    error : AssertionError: Graph is not connected. why? 'graph' is a networkx graph

    opened by DeathSentence 5
  • Spikyball exploration sampling

    Spikyball exploration sampling

    You might find the change a bit invasive (understandable :) This adds a new family exploration sampling method (spikyball) described in the paper Spikyball sampling: Exploring large networks via an inhomogeneous filtered diffusion available here https://arxiv.org/abs/2010.11786 and submitted for publication in Combinatorial Optimization, Graph, and Network Algorithms journal. The version number has been increased in order not to collide with official releases of lbof, you might want to change this...

    opened by naspert 4
  • Assumptions on graph properties

    Assumptions on graph properties

    Hi there,

    I am wondering if it would be possible to relax some constrain the graph has to satisfy in order to start an exploration on it. In particular, the requirement of connectivity seems a bit strong to me. I think a graph sampling procedure could easily deal with such property, since in the case the graph is not connected the sampling could take place on the single connected components or the exploration could rely on the neighborhood of the current node explored. For node sampling strategies like BFS and DFS looks pretty natural to me, also for Random Walk Sampling (maybe the one with the restart probability could be a little tricky). Something strange could probably happen for edge sampling if the connectivity property is not satisfied. Do you see any possibility to extend little ball of fur to such type of graphs? What was the reason that bring you to assume the connectivity property for graphs?

    Thank you !

    opened by jungla88 3
  • Error importing DiffusionSampler

    Error importing DiffusionSampler

    Hello,

    First of all, thank you for your great work building this library. Great extension to NetworkX.

    I am facing an issue when trying to import the DiffusionSampler specifically. All the other samplers get imported just fine. However the DiffusionSampler raises import issue.

    I am using a Jupyter notebook as an environment.

    The specific error output:

    ---------------------------------------------------------------------------
    ImportError                               Traceback (most recent call last)
    <ipython-input-29-fbd222d9c756> in <module>
    ----> 1 from littleballoffur import DiffusionSampler
          2 
          3 
          4 model = DiffusionSampler()
          5 new_graph = model.sample(wd50k_connected_relabeled)
    
    ImportError: cannot import name 'DiffusionSampler' from 'littleballoffur'
    

    Is this replicable?

    Thank you in advance for looking into it.

    opened by DimitrisAlivas 3
  • ForestFireSampler throws exceptions for some seed values

    ForestFireSampler throws exceptions for some seed values

    Hi,

    I am trying to sample an undirected, connected graph of 5559 nodes and 10804 edges into a sample of 100 nodes. As I loop over the "creation of samples" part, I am altering the seed for the ForeFireSampler every time to obtain a different sample.

    E.g. seed_value = random.randint(1,2147483646) sampler = ForestFireSampler(100, seed=seed_value )

    However, for some runs I get an exception thrown, which is also reproducible. I assume it is related to specific seed values which the sampler doesn´t seem to be able to handle. An example is seed value 1176372277.

    Traceback (most recent call last): File "/project/topology_extraction.py", line 472, in abstraction_G = graph_sampling(S) File "/project/topology_extraction.py", line 234, in graph_sampling new_graph = sampler.sample(S) File "/usr/local/lib/python3.8/dist-packages/littleballoffur/exploration_sampling/forestfiresampler.py", line 74, in sample self._start_a_fire(graph) File "/usr/local/lib/python3.8/dist-packages/littleballoffur/exploration_sampling/forestfiresampler.py", line 47, in _start_a_fire top_node = node_queue.popleft() IndexError: pop from an empty deque

    Process finished with exit code 1

    I believe this is a bug in the library.

    Thanks! Nils

    opened by nrodday 3
  • Error in forest fire sampling

    Error in forest fire sampling

    Hi,

    While running the forest fire sampling code, I got an error that it is trying to pop an element from an empty deque.

    File "/opt/anaconda3/lib/python3.7/site-packages/littleballoffur/exploration_sampling/forestfiresampler.py", line 47, in _start_a_fire top_node = node_queue.popleft() IndexError: pop from an empty deque

    I am not sure if it was due to data or needs an empty/try-catch check or should it be handled by application code. Hence opened an issue.

    Thank you

    opened by apurvamulay 2
  • Broken link in Readme (readdthedocs)

    Broken link in Readme (readdthedocs)

    https://littleballoffur.readthedocs.io/en/latest/notes/introduction.html

    as of 2020-05-18 9:35 AM EDT, it says "sorry this page does not exist"

    opened by bbrewington 1
  • Error in line 254 _checking_indexing() of backend.py

    Error in line 254 _checking_indexing() of backend.py

    According to your code, once numeric_indices != node_indices, the error raises. Under my scenario, I constructed a networkx graph in which the indices of nodes start from '1', and then, the sampler did not work. This error will be triggered if the indices of nodes in a networkx graph do not start from '0'. I have to adjust my graph such that the indices of nodes start from '0' to utilize your samplers. I hope you can refine this part of the code to avoid someone else meets this problem.

    opened by Haoran-Young 0
Releases(v_20200)
Owner
Benedek Rozemberczki
PhD candidate at The University of Edinburgh @cdt-data-science working on machine learning and data mining related to graph structured data.
Benedek Rozemberczki
FTIR-Deep Learning - FTIR Deep Learning With Python

CANDIY-spectrum Human analyis of chemical spectra such as Mass Spectra (MS), Inf

Wei Mei 1 Jan 03, 2022
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

John Ingraham 159 Dec 15, 2022
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
MGFN: Multi-Graph Fusion Networks for Urban Region Embedding was accepted by IJCAI-2022.

Multi-Graph Fusion Networks for Urban Region Embedding (IJCAI-22) This is the implementation of Multi-Graph Fusion Networks for Urban Region Embedding

202 Nov 18, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023
Synthetic Humans for Action Recognition, IJCV 2021

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Human

Gul Varol 59 Dec 14, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 05, 2023
torchlm is aims to build a high level pipeline for face landmarks detection, it supports training, evaluating, exporting, inference(Python/C++) and 100+ data augmentations

💎A high level pipeline for face landmarks detection, supports training, evaluating, exporting, inference and 100+ data augmentations, compatible with torchvision and albumentations, can easily instal

DefTruth 142 Dec 25, 2022
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
The official homepage of the COCO-Stuff dataset.

The COCO-Stuff dataset Holger Caesar, Jasper Uijlings, Vittorio Ferrari Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augment

Holger Caesar 715 Dec 31, 2022
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
Autotype on websites that have copy-paste disabled like Moodle, HackerEarth contest etc.

Autotype A quick and small python script that helps you autotype on websites that have copy paste disabled like Moodle, HackerEarth contests etc as it

Tushar 32 Nov 03, 2022
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022