Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Overview

Self-labelling via simultaneous clustering and representation learning

🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvision ResNet models to make loading much easier + added baselines using better MoCov2 augmentation (~69% LP performance) + added evaluation with K=1000 for ImageNet "unuspervised clustering"

🆕 🎉 updated code: 23rd April 2020: bug fixes + CIFAR code + evaluation for resnet & alexnet.

Checkout our blogpost for a quick non-technical overview and an interactive visualization of our clusters.

Self-Label

This code is the official implementation of the ICLR 2020 paper Self-labelling via simultaneous clustering and representation learning.

Abstract

Combining clustering and representation learning is one of the most promising approaches for unsupervised learning of deep neural networks. However, doing so naively leads to ill posed learning problems with degenerate solutions. In this paper, we propose a novel and principled learning formulation that addresses these issues. The method is obtained by maximizing the information between labels and input data indices. We show that this criterion extends standard crossentropy minimization to an optimal transport problem, which we solve efficiently for millions of input images and thousands of labels using a fast variant of the Sinkhorn-Knopp algorithm. The resulting method is able to self-label visual data so as to train highly competitive image representations without manual labels. Our method achieves state of the art representation learning performance for AlexNet and ResNet-50 on SVHN, CIFAR-10, CIFAR-100 and ImageNet.

Results at a glance

NMI(%) aNMI(%) ARI(%) LP Acc (%)
AlexNet 1k 50.5 12.2 2.7 42.1
AlexNet 10k 66.4 4.7 4.7 43.8
R50 10x3k 54.2 34.4 7.2 61.5

With better augmentations (all single crop)

Label-Acc NMI(%) aNMI(%) ARI(%) LP Acc (%) model_weights
Aug++ R18 1k (new) 26.9 62.7 36.4 12.5 53.3 here
Aug++ R50 1k (new) 30.5 65.7 42.0 16.2 63.5 here
Aug++ R50 10x3k (new) 38.1 75.7 52.8 27.6 68.8 here
(MoCo-v2 + k-means**, K=3k) 71.4 39.6 15.8 71.1
  • "Aug++" refers to the better augmentations used in SimCLR, taken from the MoCo-v2 repo, but I still only trained for 280 epochs, with three lr-drops as in CMC.
  • There are still further improvements to be made with a MLP or training 800 epochs (I train 280), as done in SimCLR, MoCov2 and SwAV.
  • **MoCo-v2 uses 800 epochs, MLP and cos-lr-schedule. On MoCo-v2 I run k-means (K=3000) on the avg-pooled features (after the MLP-head it's pretty much the same performance) to obtain NMI, aNMI and ARI numbers.
  • Models above use standard torchvision ResNet backbones so loading is now super easy:
import torch, torchvision
model = torchvision.models.resnet50(pretrained=False, num_classes=3000)
ckpt = torch.load('resnet50-10x3k_pp.pth')
model.load_state_dict(ckpt['state_dict'])
pseudolabels = ckpt['L']
  • note on improvement potential: by just using "aug+": I get LP-accuracy of 67.2% after 200 epochs. MoCo-v2 with "aug+" only has 63.4% after 200 epochs.

Clusters that were discovered by our method

Sorted

Imagenet validation images with clusters sorted by imagenet purity

Random

Imagenet validation images with random clusters

The edge-colors encode the true imagenet classes (which are not used for training). You can view all clusters here.

Requirements

  • Python >3.6
  • PyTorch > 1.0
  • CUDA
  • Numpy, SciPy
  • also, see requirements.txt
  • (optional:) TensorboardX

Running our code

Run the self-supervised training of an AlexNet with the command

$./scripts/alexnet.sh

or train a ResNet-50 with

$./scripts/resnet.sh

Note: you need to specify your dataset directory (it expects a format just like ImageNet with "train" and "val" folders). You also need to give the code enough GPUs to allow for storage of activations on the GPU. Otherwise you need to use the CPU variant which is significantly slower.

Full documentation of the unsupervised training code main.py:

usage: main.py [-h] [--epochs EPOCHS] [--batch-size BATCH_SIZE] [--lr LR]
               [--lrdrop LRDROP] [--wd WD] [--dtype {f64,f32}] [--nopts NOPTS]
               [--augs AUGS] [--paugs PAUGS] [--lamb LAMB] [--cpu]
               [--arch ARCH] [--archspec {big,small}] [--ncl NCL] [--hc HC]
               [--device DEVICE] [--modeldevice MODELDEVICE] [--exp EXP]
               [--workers WORKERS] [--imagenet-path IMAGENET_PATH]
               [--comment COMMENT] [--log-intv LOG_INTV] [--log-iter LOG_ITER]

PyTorch Implementation of Self-Label

optional arguments:
  -h, --help            show this help message and exit
  --epochs EPOCHS       number of epochs
  --batch-size BATCH_SIZE
                        batch size (default: 256)
  --lr LR               initial learning rate (default: 0.05)
  --lrdrop LRDROP       multiply LR by 0.1 every (default: 150 epochs)
  --wd WD               weight decay pow (default: (-5)
  --dtype {f64,f32}     SK-algo dtype (default: f64)
  --nopts NOPTS         number of pseudo-opts (default: 100)
  --augs AUGS           augmentation level (default: 3)
  --paugs PAUGS         for pseudoopt: augmentation level (default: 3)
  --lamb LAMB           for pseudoopt: lambda (default:25)
  --cpu                 use CPU variant (slow) (default: off)
  --arch ARCH           alexnet or resnet (default: alexnet)
  --archspec {big,small}
                        alexnet variant (default:big)
  --ncl NCL             number of clusters per head (default: 3000)
  --hc HC               number of heads (default: 1)
  --device DEVICE       GPU devices to use for storage and model
  --modeldevice MODELDEVICE
                        GPU numbers on which the CNN runs
  --exp EXP             path to experiment directory
  --workers WORKERS     number workers (default: 6)
  --imagenet-path IMAGENET_PATH
                        path to folder that contains `train` and `val`
  --comment COMMENT     name for tensorboardX
  --log-intv LOG_INTV   save stuff every x epochs (default: 1)
  --log-iter LOG_ITER   log every x-th batch (default: 200)

Evaluation

Linear Evaluation

We provide the linear evaluation methods in this repo. Simply download the models via . ./scripts/download_models.sh and then either run scripts/eval-alexnet.sh or scripts/eval-resnet.sh.

Pascal VOC

We follow the standard evaluation protocols for self-supervised visual representation learning.

Our extracted pseudolabels

As we show in the paper, the pseudolabels we generate from our training can be used to quickly train a neural network with regular cross-entropy. Moreover they seem to correctly group together similar images. Hence we provide the labels for everyone to use.

AlexNet

You can download the pseudolabels from our best (raw) AlexNet model with 10x3000 clusters here.

ResNet

You can download the pseudolabels from our best ResNet model with 10x3000 clusters here.

Trained models

You can also download our trained models by running

$./scripts/download_models.sh

Use them like this:

import torch
import models
d = torch.load('self-label_models/resnet-10x3k.pth')
m = models.resnet(num_classes = [3000]*10)
m.load_state_dict(d)

d = torch.load('self-label_models/alexnet-10x3k-wRot.pth')
m = models.alexnet(num_classes = [3000]*10)
m.load_state_dict(d)

Reference

If you use this code etc., please cite the following paper:

Yuki M. Asano, Christian Rupprecht and Andrea Vedaldi. "Self-labelling via simultaneous clustering and representation learning." Proc. ICLR (2020)

@inproceedings{asano2020self,
  title={Self-labelling via simultaneous clustering and representation learning},
  author={Asano, Yuki M. and Rupprecht, Christian and Vedaldi, Andrea},
  booktitle={International Conference on Learning Representations (ICLR)},
  year={2020},
}
Owner
Yuki M. Asano
I'm an Computer Vision researcher at the University of Amsterdam. Did my PhD at the Visual Geometry Group in Oxford.
Yuki M. Asano
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
code for paper"A High-precision Semantic Segmentation Method Combining Adversarial Learning and Attention Mechanism"

PyTorch implementation of UAGAN(U-net Attention Generative Adversarial Networks) This repository contains the source code for the paper "A High-precis

Tong 8 Apr 25, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
Trajectory Prediction with Graph-based Dual-scale Context Fusion

DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C

HKUST Aerial Robotics Group 103 Jan 04, 2023
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
(EI 2022) Controllable Confidence-Based Image Denoising

Image Denoising with Control over Deep Network Hallucination Paper and arXiv preprint -- Our frequency-domain insights derive from SFM and the concept

Images and Visual Representation Laboratory (IVRL) at EPFL 5 Dec 18, 2022
Learning to Map Large-scale Sparse Graphs on Memristive Crossbar

Release of AutoGMap:Learning to Map Large-scale Sparse Graphs on Memristive Crossbar For reproduction of our searched model, the Ubuntu OS is recommen

2 Aug 23, 2022
Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

One Thing One Click One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021) Code for the paper One Thi

44 Dec 12, 2022
Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

3 Aug 09, 2022
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
PyTorch implementation for paper StARformer: Transformer with State-Action-Reward Representations.

StARformer This repository contains the PyTorch implementation for our paper titled StARformer: Transformer with State-Action-Reward Representations.

Jinghuan Shang 14 Dec 09, 2022
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022