Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Overview

Self-labelling via simultaneous clustering and representation learning

๐Ÿ†— ๐Ÿ†— ๐ŸŽ‰ NEW models (20th August 2020): Added standard SeLa pretrained torchvision ResNet models to make loading much easier + added baselines using better MoCov2 augmentation (~69% LP performance) + added evaluation with K=1000 for ImageNet "unuspervised clustering"

๐Ÿ†• โœ… ๐ŸŽ‰ updated code: 23rd April 2020: bug fixes + CIFAR code + evaluation for resnet & alexnet.

Checkout our blogpost for a quick non-technical overview and an interactive visualization of our clusters.

Self-Label

This code is the official implementation of the ICLR 2020 paper Self-labelling via simultaneous clustering and representation learning.

Abstract

Combining clustering and representation learning is one of the most promising approaches for unsupervised learning of deep neural networks. However, doing so naively leads to ill posed learning problems with degenerate solutions. In this paper, we propose a novel and principled learning formulation that addresses these issues. The method is obtained by maximizing the information between labels and input data indices. We show that this criterion extends standard crossentropy minimization to an optimal transport problem, which we solve efficiently for millions of input images and thousands of labels using a fast variant of the Sinkhorn-Knopp algorithm. The resulting method is able to self-label visual data so as to train highly competitive image representations without manual labels. Our method achieves state of the art representation learning performance for AlexNet and ResNet-50 on SVHN, CIFAR-10, CIFAR-100 and ImageNet.

Results at a glance

NMI(%) aNMI(%) ARI(%) LP Acc (%)
AlexNet 1k 50.5 12.2 2.7 42.1
AlexNet 10k 66.4 4.7 4.7 43.8
R50 10x3k 54.2 34.4 7.2 61.5

With better augmentations (all single crop)

Label-Acc NMI(%) aNMI(%) ARI(%) LP Acc (%) model_weights
Aug++ R18 1k (new) 26.9 62.7 36.4 12.5 53.3 here
Aug++ R50 1k (new) 30.5 65.7 42.0 16.2 63.5 here
Aug++ R50 10x3k (new) 38.1 75.7 52.8 27.6 68.8 here
(MoCo-v2 + k-means**, K=3k) 71.4 39.6 15.8 71.1
  • "Aug++" refers to the better augmentations used in SimCLR, taken from the MoCo-v2 repo, but I still only trained for 280 epochs, with three lr-drops as in CMC.
  • There are still further improvements to be made with a MLP or training 800 epochs (I train 280), as done in SimCLR, MoCov2 and SwAV.
  • **MoCo-v2 uses 800 epochs, MLP and cos-lr-schedule. On MoCo-v2 I run k-means (K=3000) on the avg-pooled features (after the MLP-head it's pretty much the same performance) to obtain NMI, aNMI and ARI numbers.
  • Models above use standard torchvision ResNet backbones so loading is now super easy:
import torch, torchvision
model = torchvision.models.resnet50(pretrained=False, num_classes=3000)
ckpt = torch.load('resnet50-10x3k_pp.pth')
model.load_state_dict(ckpt['state_dict'])
pseudolabels = ckpt['L']
  • note on improvement potential: by just using "aug+": I get LP-accuracy of 67.2% after 200 epochs. MoCo-v2 with "aug+" only has 63.4% after 200 epochs.

Clusters that were discovered by our method

Sorted

Imagenet validation images with clusters sorted by imagenet purity

Random

Imagenet validation images with random clusters

The edge-colors encode the true imagenet classes (which are not used for training). You can view all clusters here.

Requirements

  • Python >3.6
  • PyTorch > 1.0
  • CUDA
  • Numpy, SciPy
  • also, see requirements.txt
  • (optional:) TensorboardX

Running our code

Run the self-supervised training of an AlexNet with the command

$./scripts/alexnet.sh

or train a ResNet-50 with

$./scripts/resnet.sh

Note: you need to specify your dataset directory (it expects a format just like ImageNet with "train" and "val" folders). You also need to give the code enough GPUs to allow for storage of activations on the GPU. Otherwise you need to use the CPU variant which is significantly slower.

Full documentation of the unsupervised training code main.py:

usage: main.py [-h] [--epochs EPOCHS] [--batch-size BATCH_SIZE] [--lr LR]
               [--lrdrop LRDROP] [--wd WD] [--dtype {f64,f32}] [--nopts NOPTS]
               [--augs AUGS] [--paugs PAUGS] [--lamb LAMB] [--cpu]
               [--arch ARCH] [--archspec {big,small}] [--ncl NCL] [--hc HC]
               [--device DEVICE] [--modeldevice MODELDEVICE] [--exp EXP]
               [--workers WORKERS] [--imagenet-path IMAGENET_PATH]
               [--comment COMMENT] [--log-intv LOG_INTV] [--log-iter LOG_ITER]

PyTorch Implementation of Self-Label

optional arguments:
  -h, --help            show this help message and exit
  --epochs EPOCHS       number of epochs
  --batch-size BATCH_SIZE
                        batch size (default: 256)
  --lr LR               initial learning rate (default: 0.05)
  --lrdrop LRDROP       multiply LR by 0.1 every (default: 150 epochs)
  --wd WD               weight decay pow (default: (-5)
  --dtype {f64,f32}     SK-algo dtype (default: f64)
  --nopts NOPTS         number of pseudo-opts (default: 100)
  --augs AUGS           augmentation level (default: 3)
  --paugs PAUGS         for pseudoopt: augmentation level (default: 3)
  --lamb LAMB           for pseudoopt: lambda (default:25)
  --cpu                 use CPU variant (slow) (default: off)
  --arch ARCH           alexnet or resnet (default: alexnet)
  --archspec {big,small}
                        alexnet variant (default:big)
  --ncl NCL             number of clusters per head (default: 3000)
  --hc HC               number of heads (default: 1)
  --device DEVICE       GPU devices to use for storage and model
  --modeldevice MODELDEVICE
                        GPU numbers on which the CNN runs
  --exp EXP             path to experiment directory
  --workers WORKERS     number workers (default: 6)
  --imagenet-path IMAGENET_PATH
                        path to folder that contains `train` and `val`
  --comment COMMENT     name for tensorboardX
  --log-intv LOG_INTV   save stuff every x epochs (default: 1)
  --log-iter LOG_ITER   log every x-th batch (default: 200)

Evaluation

Linear Evaluation

We provide the linear evaluation methods in this repo. Simply download the models via . ./scripts/download_models.sh and then either run scripts/eval-alexnet.sh or scripts/eval-resnet.sh.

Pascal VOC

We follow the standard evaluation protocols for self-supervised visual representation learning.

Our extracted pseudolabels

As we show in the paper, the pseudolabels we generate from our training can be used to quickly train a neural network with regular cross-entropy. Moreover they seem to correctly group together similar images. Hence we provide the labels for everyone to use.

AlexNet

You can download the pseudolabels from our best (raw) AlexNet model with 10x3000 clusters here.

ResNet

You can download the pseudolabels from our best ResNet model with 10x3000 clusters here.

Trained models

You can also download our trained models by running

$./scripts/download_models.sh

Use them like this:

import torch
import models
d = torch.load('self-label_models/resnet-10x3k.pth')
m = models.resnet(num_classes = [3000]*10)
m.load_state_dict(d)

d = torch.load('self-label_models/alexnet-10x3k-wRot.pth')
m = models.alexnet(num_classes = [3000]*10)
m.load_state_dict(d)

Reference

If you use this code etc., please cite the following paper:

Yuki M. Asano, Christian Rupprecht and Andrea Vedaldi. "Self-labelling via simultaneous clustering and representation learning." Proc. ICLR (2020)

@inproceedings{asano2020self,
  title={Self-labelling via simultaneous clustering and representation learning},
  author={Asano, Yuki M. and Rupprecht, Christian and Vedaldi, Andrea},
  booktitle={International Conference on Learning Representations (ICLR)},
  year={2020},
}
Owner
Yuki M. Asano
I'm an Computer Vision researcher at the University of Amsterdam. Did my PhD at the Visual Geometry Group in Oxford.
Yuki M. Asano
The offcial repository for 'CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos', SIGIR2022

CharacterBERT-DR The offcial repository for CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos, Sh

ielab 11 Nov 15, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
Simple tutorials on Pytorch DDP training

pytorch-distributed-training Distribute Dataparallel (DDP) Training on Pytorch Features Easy to study DDP training You can directly copy this code for

Ren Tianhe 188 Jan 06, 2023
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

47 2 May 17, 2022
Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-

22 Sep 22, 2022
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape

Princeton INSPIRE Research Group 113 Nov 27, 2022
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022