BankNote-Net: Open dataset and encoder model for assistive currency recognition

Overview

BankNote-Net: Open Dataset for Assistive Currency Recognition

Millions of people around the world have low or no vision. Assistive software applications have been developed for a variety of day-to-day tasks, including currency recognition. To aid with this task, we present BankNote-Net, an open dataset for assistive currency recognition. The dataset consists of a total of 24,816 embeddings of banknote images captured in a variety of assistive scenarios, spanning 17 currencies and 112 denominations. These compliant embeddings were learned using supervised contrastive learning and a MobileNetV2 architecture, and they can be used to train and test specialized downstream models for any currency, including those not covered by our dataset or for which only a few real images per denomination are available (few-shot learning). We deploy a variation of this model for public use in the last version of the Seeing AI app developed by Microsoft, which has over a 100 thousand monthly active users.

If you make use of this dataset or pre-trained model in your own project, please consider referencing this GitHub repository and citing our paper:

@article{oviedoBankNote-Net2022,
  title   = {BankNote-Net: Open Dataset for Assistive Currency Recognition},
  author  = {Felipe Oviedo, Srinivas Vinnakota, Eugene Seleznev, Hemant Malhotra, Saqib Shaikh & Juan Lavista Ferres},
  journal = {https://arxiv.org/pdf/2204.03738.pdf},
  year    = {2022},
}

Data Structure

The dataset data structure consists of 256-dimensional vector embeddings with additional columns for currency, denomination and face labels, as explained in the data exploration notebook. The dataset is saved as 24,826 x 258 flat table in feather and csv file formats. Figure 1 presents some of these learned embeddings.

Figure 1: t-SNE representations of the BankNote-Net embeddings for a few selected currencies.

Setup and Dataset Usage

  1. Install requirements.

    Please, use the conda environment file env.yaml to install the right dependencies.

    # Create conda environment
    conda create env -f env.yaml
    
    # Activate environment to run examples
    conda activate banknote_net
    
  2. Example 1: Train a shallow classifier directly from the dataset embeddings for a currency available in the dataset. For inference, images should be encoded first using the keras MobileNet V2 pre-trained encoder model.

    Run the following file from root: train_from_embedding.py

    python src/train_from_embedding.py --currency AUD --bsize 128 --epochs 25 --dpath ./data/banknote_net.feather
    
      usage: train_from_embedding.py [-h] --currency
                                  {AUD,BRL,CAD,EUR,GBP,INR,JPY,MXN,PKR,SGD,TRY,USD,NZD,NNR,MYR,IDR,PHP}
                                  [--bsize BSIZE] [--epochs EPOCHS]
                                  [--dpath DPATH]
    
      Train model from embeddings.
    
      optional arguments:
      -h, --help            show this help message and exit
      --currency {AUD,BRL,CAD,EUR,GBP,INR,JPY,MXN,PKR,SGD,TRY,USD,NZD,NNR,MYR,IDR,PHP}, --c {AUD,BRL,CAD,EUR,GBP,INR,JPY,MXN,PKR,SGD,TRY,USD,NZD,NNR,MYR,IDR,PHP}
                              String of currency for which to train shallow
                              classifier
      --bsize BSIZE, --b BSIZE
                              Batch size for shallow classifier
      --epochs EPOCHS, --e EPOCHS
                              Number of epochs for training shallow top classifier
      --dpath DPATH, --d DPATH
                              Path to .feather BankNote Net embeddings
                          
    
  3. Example 2: Train a classifier on top of the BankNote-Net pre-trained encoder model using images in a custom directory. Input images must be of size 224 x 224 pixels and have square aspect ratio. For this example, we use a couple dozen images spanning 8 classes for Swedish Krona, structured as in the example_images/SEK directory, that contains both training and validation images.

    Run the following file from root: train_custom.py

    python src/train_custom.py --bsize 4 --epochs 25 --data_path ./data/example_images/SEK/ --enc_path ./models/banknote_net_encoder.h5
    
    usage: train_custom.py [-h] [--bsize BSIZE] [--epochs EPOCHS]
                      [--data_path DATA_PATH] [--enc_path ENC_PATH]
    
    Train model from custom image folder using pre-trained BankNote-Net encoder.
    
    optional arguments:
    -h, --help            show this help message and exit
    --bsize BSIZE, --b BSIZE
                          Batch size
    --epochs EPOCHS, --e EPOCHS
                          Number of epochs for training shallow top classifier.
    --data_path DATA_PATH, --data DATA_PATH
                          Path to folder with images.
    --enc_path ENC_PATH, --enc ENC_PATH
                          Path to .h5 file of pre-trained encoder model.                       
    
  4. Example 3: Perform inference using the SEK few-shot classifier of Example 2, and the validation images on example_images/SEK/val

    Run the following file from root: predict_custom.py, returns encoded predictions.

      python src/predict_custom.py --bsize 1 --data_path ./data/example_images/SEK/val/ --model_path ./src/trained_models/custom_classifier.h5
    
      usage: predict_custom.py [-h] [--bsize BSIZE] [--data_path DATA_PATH]
                              [--model_path MODEL_PATH]
    
      Perform inference using trained custom classifier.
    
      optional arguments:
      -h, --help            show this help message and exit
      --bsize BSIZE, --b BSIZE
                              Batch size
      --data_path DATA_PATH, --data DATA_PATH
                              Path to custom folder with validation images.
      --model_path MODEL_PATH, --enc MODEL_PATH
                              Path to .h5 file of trained classification model.                           
    

License for Dataset and Model

Copyright (c) Microsoft Corporation. All rights reserved.

The dataset is open for anyone to use under the CDLA-Permissive-2.0 license. The embeddings should not be used to reconstruct high resolution banknote images.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
A PyTorch implementation of a Factorization Machine module in cython.

fmpytorch A library for factorization machines in pytorch. A factorization machine is like a linear model, except multiplicative interaction terms bet

Jack Hessel 167 Jul 06, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

NVIDIA Research Projects 10.1k Dec 28, 2022
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
Ladder Variational Autoencoders (LVAE) in PyTorch

Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at

Andrea Dittadi 63 Dec 22, 2022
最新版本yolov5+deepsort目标检测和追踪,支持5.0版本可训练自己数据集

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

422 Dec 30, 2022
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

ccks2021-track3 CCKS2021中文NLP地址相关性任务-赛道三-冠军方案 团队:我的加菲鱼- wodejiafeiyu 初赛第二/复赛第一/决赛第一 前言 19年开始,陆陆续续参加了一些比赛,拿到过一些top,比较懒一直都没分享过,这次比较幸运又拿了top1,打算分享下 分类的任务

shaochenjie 131 Dec 31, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
Source code for Transformer-based Multi-task Learning for Disaster Tweet Categorisation (UCD's participation in TREC-IS 2020A, 2020B and 2021A).

Source code for "UCD participation in TREC-IS 2020A, 2020B and 2021A". *** update at: 2021/05/25 This repo so far relates to the following work: Trans

Congcong Wang 4 Oct 19, 2021
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21).

ACTION-Net Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21). Getting Started EgoGesture data folder struct

V-Sense 171 Dec 26, 2022
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022
Dilated RNNs in pytorch

PyTorch Dilated Recurrent Neural Networks PyTorch implementation of Dilated Recurrent Neural Networks (DilatedRNN). Getting Started Installation: $ pi

Zalando Research 200 Nov 17, 2022
Smart edu-autobooking - Johnson @ DMI-UNICT study room self-booking system

smart_edu-autobooking Sistema di autoprenotazione per l'aula studio [email protected]

Davide Carnemolla 17 Jun 20, 2022