A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Overview

Open3DSOT

A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

The official code release of BAT and MM Track.

Features

  • Modular design. It is easy to config the model and training/testing behaviors through just a .yaml file.
  • DDP support for both training and testing.
  • Support all common tracking datasets (KITTI, NuScenes, Waymo Open Dataset).

📣 One tracking paper is accepted by CVPR2022 (Oral)! 👇

Trackers

This repository includes the implementation of the following models:

MM-Track (CVPR2022 Oral)

[Paper] [Project Page]

MM-Track is the first motion-centric tracker in LiDAR SOT, which robustly handles distractors and drastic appearance changes in complex driving scenes. Unlike previous methods, MM-Track is a matching-free two-stage tracker which localizes the targets by explicitly modeling the "relative target motion" among frames.

BAT (ICCV2021)

[Paper] [Results]

Official implementation of BAT. BAT uses the BBox information to compensate the information loss of incomplete scans. It augments the target template with box-aware features that efficiently and effectively improve appearance matching.

P2B (CVPR2020)

[Paper] [Official implementation]

Third party implementation of P2B. Our implementation achieves better results than the official code release. P2B adapts SiamRPN to 3D point clouds by integrating a pointwise correlation operator with a point-based RPN (VoteNet).

Setup

Installation

  • Create the environment

    git clone https://github.com/Ghostish/Open3DSOT.git
    cd Open3DSOT
    conda create -n Open3DSOT  python=3.6
    conda activate Open3DSOT
    
  • Install pytorch

    conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch
    

    Our code is well tested with pytorch 1.4.0 and CUDA 10.1. But other platforms may also work. Follow this to install another version of pytorch. Note: In order to reproduce the reported results with the provided checkpoints, please use CUDA 10.x.

  • Install other dependencies:

    pip install -r requirement.txt
    

    Install the nuscenes-devkit if you use want to use NuScenes dataset:

    pip install nuscenes-devkit
    

KITTI dataset

  • Download the data for velodyne, calib and label_02 from KITTI Tracking.
  • Unzip the downloaded files.
  • Put the unzipped files under the same folder as following.
    [Parent Folder]
    --> [calib]
        --> {0000-0020}.txt
    --> [label_02]
        --> {0000-0020}.txt
    --> [velodyne]
        --> [0000-0020] folders with velodynes .bin files
    

NuScenes dataset

  • Download the dataset from the download page
  • Extract the downloaded files and make sure you have the following structure:
    [Parent Folder]
      samples	-	Sensor data for keyframes.
      sweeps	-	Sensor data for intermediate frames.
      maps	        -	Folder for all map files: rasterized .png images and vectorized .json files.
      v1.0-*	-	JSON tables that include all the meta data and annotations. Each split (trainval, test, mini) is provided in a separate folder.
    

Note: We use the train_track split to train our model and test it with the val split. Both splits are officially provided by NuScenes. During testing, we ignore the sequences where there is no point in the first given bbox.

Waymo dataset

  • Download and prepare dataset by the instruction of CenterPoint.
    [Parent Folder]
      tfrecord_training	                    
      tfrecord_validation	                 
      train 	                                    -	all training frames and annotations 
      val   	                                    -	all validation frames and annotations 
      infos_train_01sweeps_filter_zero_gt.pkl
      infos_val_01sweeps_filter_zero_gt.pkl
    
  • Prepare SOT dataset. Data from specific category and split will be merged (e.g., sot_infos_vehicle_train.pkl).
  python datasets/generate_waymo_sot.py

Quick Start

Training

To train a model, you must specify the .yaml file with --cfg argument. The .yaml file contains all the configurations of the dataset and the model. Currently, we provide four .yaml files under the cfgs directory. Note: Before running the code, you will need to edit the .yaml file by setting the path argument as the correct root of the dataset.

python main.py --gpu 0 1 --cfg cfgs/BAT_Car.yaml  --batch_size 50 --epoch 60 --preloading

After you start training, you can start Tensorboard to monitor the training process:

tensorboard --logdir=./ --port=6006

By default, the trainer runs a full evaluation on the full test split after training every epoch. You can set --check_val_every_n_epoch to a larger number to speed up the training. The --preloading flag is used to preload the training samples into the memory to save traning time. Remove this flag if you don't have enough memory.

Testing

To test a trained model, specify the checkpoint location with --checkpoint argument and send the --test flag to the command.

python main.py --gpu 0 1 --cfg cfgs/BAT_Car.yaml  --checkpoint /path/to/checkpoint/xxx.ckpt --test

Reproduction

Model Category Success Precision Checkpoint
BAT-KITTI Car 65.37 78.88 pretrained_models/bat_kitti_car.ckpt
BAT-NuScenes Car 40.73 43.29 pretrained_models/bat_nuscenes_car.ckpt
BAT-KITTI Pedestrian 45.74 74.53 pretrained_models/bat_kitti_pedestrian.ckpt

Three trained BAT models for KITTI and NuScenes datasets are provided in the pretrained_models directory. To reproduce the results, simply run the code with the corresponding .yaml file and checkpoint. For example, to reproduce the tracking results on KITTI Car, just run:

python main.py --gpu 0 1 --cfg cfgs/BAT_Car.yaml  --checkpoint ./pretrained_models/bat_kitti_car.ckpt --test

Acknowledgment

  • This repo is built upon P2B and SC3D.
  • Thank Erik Wijmans for his pytorch implementation of PointNet++

License

This repository is released under MIT License (see LICENSE file for details).

Owner
Kangel Zenn
Ph.D. Student in CUHKSZ.
Kangel Zenn
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

100 Dec 22, 2022
Deep-Learning-Book-Chapter-Summaries - Attempting to make the Deep Learning Book easier to understand.

Deep-Learning-Book-Chapter-Summaries This repository provides a summary for each chapter of the Deep Learning book by Ian Goodfellow, Yoshua Bengio an

Aman Dalmia 1k Dec 27, 2022
Aligning Latent and Image Spaces to Connect the Unconnectable

About This repo contains the official implementation of the Aligning Latent and Image Spaces to Connect the Unconnectable paper. It is a GAN model whi

Ivan Skorokhodov 203 Jan 03, 2023
Python-based Informatics Kit for Analysing Chemical Units

INSTALLATION Python-based Informatics Kit for the Analysis of Chemical Units Step 1: Make a conda environment: conda create -n pikachu python=3.9 cond

47 Dec 23, 2022
PySLM Python Library for Selective Laser Melting and Additive Manufacturing

PySLM Python Library for Selective Laser Melting and Additive Manufacturing PySLM is a Python library for supporting development of input files used i

Dr Luke Parry 35 Dec 27, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
ruptures: change point detection in Python

Welcome to ruptures ruptures is a Python library for off-line change point detection. This package provides methods for the analysis and segmentation

Charles T. 1.1k Jan 03, 2023
Deep Learning segmentation suite designed for 2D microscopy image segmentation

Deep Learning segmentation suite dessigned for 2D microscopy image segmentation This repository provides researchers with a code to try different enco

7 Nov 03, 2022
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Said Gamal 1 Jan 18, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p

Angtian Wang 76 Nov 23, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022