Running Google MoveNet Multipose Tracking models on OpenVINO.

Overview

MoveNet Multipose Tracking on OpenVINO

Running Google MoveNet Multipose models on OpenVINO.

A convolutional neural network model that runs on RGB images and predicts human joint locations of several persons (6 max).

WIP: currently only working on CPU (not on GPU nor MYRIAD)

Demo

Full video demo here.

For MoveNet Single Pose, please visit : openvino_movenet

Install

You need OpenVINO (tested on 2021.4) and OpenCV installed on your computer and to clone/download this repository.

Run

Usage:

> python3 MovenetMPOpenvino.py -h
usage: MovenetMPOpenvino.py [-h] [-i INPUT] [--xml XML]
                            [-r {192x192,192x256,256x256,256x320,320x320,480x640,736x1280}]
                            [-t {iou,oks}] [-s SCORE_THRESHOLD] [-o OUTPUT]

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT, --input INPUT
                        Path to video or image file to use as input
                        (default=0)
  --xml XML             Path to an .xml file for model
  -r {192x192,192x256,256x256,256x320,320x320,480x640,736x1280}, --res {192x192,192x256,256x256,256x320,320x320,480x640,736x1280}
  -t {iou,oks}, --tracking {iou,oks}
                        Enable tracking and specify method
  -s SCORE_THRESHOLD, --score_threshold SCORE_THRESHOLD
                        Confidence score (default=0.200000)
  -o OUTPUT, --output OUTPUT
                        Path to output video file

Examples :

  • To use default webcam camera as input :

    python3 MovenetMPOpenvino.py

  • To specify the model input resolution :

    python3 MovenetMPOpenvino.py -r 256x320

  • To enable tracking, based on Object Keypoint Similarity :

    python3 MovenetMPOpenvino.py -t keypoint

  • To use a file (video or image) as input :

    python3 MovenetMPOpenvino.py -i filename

Keypress Function
Esc Exit
space Pause
b Show/hide bounding boxes
f Show/hide FPS

Input resolution

The model input resolution (set with the '-r' or '--res' option) has an impact on the inference speed (the higher the resolution, the slower the inference) and on the size of the people that can be detected (the higher the resoltion, the smaller the size). The test below has been run on a CPU i7700k.

Resolution FPS Result
192x256 58.0 192x256
256x320 44.1 256x320
480x640 14.8 480x640
736x1280 4.5 736x1280

Tracking

The Javascript MoveNet demo code from Google proposes as an option two methods of tracking. For this repository, I have adapted this tracking code in python. You can enable the tracking with the --tracking (or -t) argument of the demo followed by iou or oks which specifies how to calculate the similarity between detections from consecutive frames :

Tracking Result
IoU Tracking IoU Tracking
OKS Tracking OKS Tracking

In the example above, we can notice several track switching in the IoU output and a track replacement (2 by 6). OKS method is doing a better job, yet it is not perfect: there is a track switching when body 3 is passing in front of body 1.

The models

The MoveNet Multipose v1 source model comes from the Tensorfow Hub: https://tfhub.dev/google/movenet/multipose/lightning/1

The model was converted by PINTO in OpenVINO IR format. Unfortunately, the OpenVINO IR MoveNet model input resolution cannot be changed dynamically, so an arbitrary list of models have been generated, each one with its dedicated input resolution. These models and others (other resolutions or precisions) are also available there: https://github.com/PINTO0309/PINTO_model_zoo/tree/main/137_MoveNet_MultiPose

Credits

Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

grassking100 1 Nov 30, 2021
This is a simple plugin for Vim that allows you to use OpenAI Codex.

🤖 Vim Codex An AI plugin that does the work for you. This is a simple plugin for Vim that will allow you to use OpenAI Codex. To use this plugin you

Tom Dörr 195 Dec 28, 2022
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

AutoML-Freiburg-Hannover 26 Dec 12, 2022
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
An Unbiased Learning To Rank Algorithms (ULTRA) toolbox

Unbiased Learning to Rank Algorithms (ULTRA) This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiment

back 3 Nov 18, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Enhancing Knowledge Tracing via Adversarial Training

Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T

Xiaopeng Guo 14 Oct 24, 2022
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021