The official github repository for Towards Continual Knowledge Learning of Language Models

Overview

Towards Continual Knowledge Learning of Language Models

This is the official github repository for Towards Continual Knowledge Learning of Language Models.

In order to reproduce our results, take the following steps:

1. Create conda environment and install requirements

conda create -n ckl python=3.8 && conda activate ckl
pip install -r requirements.txt

Also, make sure to install the correct version of pytorch corresponding to the CUDA version and environment: Refer to https://pytorch.org/

#For CUDA 10.x
pip3 install torch torchvision torchaudio
#For CUDA 11.x
pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html

2. Download the data used for the experiments.

To download only the CKL benchmark dataset:

python download_ckl_data.py

To download ALL of the data used for the experiments (required to reproduce results):

python download_all_data.py

To download the (continually pretrained) model checkpoints of the main experiment (required to reproduce results):

python download_model_checkpoints.py

For the other experimental settings such as multiple CKL phases, GPT-2, we do not separately provide the continually pretrained model checkpoints.

3. Reproducing Experimental Results

We provide all the configs in order to reproduce the zero-shot results of our paper. We only provide the model checkpoints for the main experimental setting (full_setting) which can be downloaded with the command above.

configs
├── full_setting
│   ├── evaluation
│   |   ├── invariantLAMA
│   |   |   ├── t5_baseline.json
│   |   |   ├── t5_kadapters.json
│   |   |   ├── ...
│   |   ├── newLAMA
│   |   ├── newLAMA_easy
│   |   ├── updatedLAMA
│   ├── training
│   |   ├── t5_baseline.json
│   |   ├── t5_kadapters.json
│   |   ├── ...
├── GPT2
│   ├── ...
├── kilt
│   ├── ...
├── small_setting
│   ├── ...
├── split
│   ├── ...                    

Components in each configurations file

  • input_length (int) : the input sequence length
  • output_length (int) : the output sequence length
  • num_train_epochs (int) : number of training epochs
  • output_dir (string) : the directory to save the model checkpoints
  • dataset (string) : the dataset to perform zero-shot evaluation or continual pretraining
  • dataset_version (string) : the version of the dataset ['full', 'small', 'debug']
  • train_batch_size (int) : batch size used for training
  • learning rate (float) : learning rate used for training
  • model (string) : model name in huggingface models (https://huggingface.co/models)
  • method (string) : method being used ['baseline', 'kadapter', 'lora', 'mixreview', 'modular_small', 'recadam']
  • freeze_level (int) : how much of the model to freeze during traininig (0 for none, 1 for freezing only encoder, 2 for freezing all of the parameters)
  • gradient_accumulation_steps (int) : gradient accumulation used to match the global training batch of each method
  • ngpu (int) : number of gpus used for the run
  • num_workers (int) : number of workers for the Dataloader
  • resume_from_checkpoint (string) : null by default. directory to model checkpoint if resuming from checkpoint
  • accelerator (string) : 'ddp' by default. the pytorch lightning accelerator to be used.
  • use_deepspeed (bool) : false by default. Currently not extensively tested.
  • CUDA_VISIBLE_DEVICES (string) : gpu devices that are made available for this run (e.g. "0,1,2,3", "0")
  • wandb_log (bool) : whether to log experiment through wandb
  • wandb_project (string) : project name of wandb
  • wandb_run_name (string) : the name of this training run
  • mode (string) : 'pretrain' for all configs
  • use_lr_scheduling (bool) : true if using learning rate scheduling
  • check_validation (bool) : true for evaluation (no training)
  • checkpoint_path (string) : path to the model checkpoint that is used for evaluation
  • output_log (string) : directory to log evaluation results to
  • split_num (int) : default is 1. more than 1 if there are multile CKL phases
  • split (int) : which CKL phase it is

This is an example of getting the invariantLAMA zero-shot evaluation of continually pretrained t5_kadapters

python run.py --config configs/full_setting/evaluation/invariantLAMA/t5_kadapters.json

This is an example of performing continual pretraining on CC-RecentNews (main experiment) with t5_kadapters

python run.py --config configs/full_setting/training/t5_kadapters.json

Reference

@article{jang2021towards,
  title={Towards Continual Knowledge Learning of Language Models},
  author={Jang, Joel and Ye, Seonghyeon and Yang, Sohee and Shin, Joongbo and Han, Janghoon and Kim, Gyeonghun and Choi, Stanley Jungkyu and Seo, Minjoon},
  journal={arXiv preprint arXiv:2110.03215},
  year={2021}
}
Owner
Joel Jang | 장요엘
Aspiring NLP researcher and a MS student at the Graduate School of AI, KAIST advised by Minjoon Seo
Joel Jang | 장요엘
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,

2 Oct 28, 2022
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

25 Dec 08, 2022
Code for "Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification", ECCV 2020 Spotlight

Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification Implementation of "Learning From Multiple Experts: Se

27 Nov 05, 2022
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

Media Computing Group @ Nankai University 537 Jan 07, 2023
This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

candle-simulator This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset. The rend

1 Dec 15, 2021
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

75 Dec 28, 2022
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

HifiFace — Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

MINDs Lab 218 Jan 04, 2023
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
Score refinement for confidence-based 3D multi-object tracking

Score refinement for confidence-based 3D multi-object tracking Our video gives a brief explanation of our Method. This is the official code for the pa

Cognitive Systems Research Group 47 Dec 26, 2022
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
Mixed Neural Likelihood Estimation for models of decision-making

Mixed neural likelihood estimation for models of decision-making Mixed neural likelihood estimation (MNLE) enables Bayesian parameter inference for mo

mackelab 9 Dec 22, 2022
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022