Implementation of the Point Transformer layer, in Pytorch

Overview

Point Transformer - Pytorch

Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed their group to outperform all previous methods in point cloud classification and segmentation.

Install

$ pip install point-transformer-pytorch

Usage

import torch
from point_transformer_pytorch import PointTransformerLayer

attn = PointTransformerLayer(
    dim = 128,
    pos_mlp_hidden_dim = 64,
    attn_mlp_hidden_mult = 4
)

x = torch.randn(1, 16, 128)
pos = torch.randn(1, 16, 3)

attn(x, pos) # (1, 16, 128)

Citations

@misc{zhao2020point,
    title={Point Transformer}, 
    author={Hengshuang Zhao and Li Jiang and Jiaya Jia and Philip Torr and Vladlen Koltun},
    year={2020},
    eprint={2012.09164},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Comments
  • Did You Falsify Your Experimental Results???

    Did You Falsify Your Experimental Results???

    No one can reproduce the performance reported in your original paper. Please post your pre-trained model or your original code. Otherwise, we must question your academic ethics!****

    opened by TruthIsEveryThing 1
  • Issues with my wrapper code

    Issues with my wrapper code

    I wrote some wrapper code to turn this layer into a full transformer and I can't seem to figure out what is going wrong. The following works:

    import torch
    from torch import nn, einsum
    import x_transformers
    from point_transformer_pytorch import PointTransformerLayer
    
    layer = PointTransformerLayer(
        dim = 7,
        pos_mlp_hidden_dim = 64,
        attn_mlp_hidden_mult = 4,
        num_neighbors = 16          # only the 16 nearest neighbors would be attended to for each point
    )
    
    feats = torch.randn(1, 5, 7)
    pos = torch.randn(1, 5, 3)
    mask = torch.ones(1, 5).bool()
    
    y = layer(feats, pos, mask = mask)
    

    However this doesn't work

    import torch
    from torch import nn, einsum
    import x_transformers
    from point_transformer_pytorch import PointTransformerLayer
    
    class PointTransformer(nn.Module):
        def __init__(self, feats, mask, neighbors = 16, layers=5, dimension=5):
            
            super().__init__()
            
            self.feats = feats
            self.mask = mask
            self.neighbors = neighbors
            
            self.layers = []
            
            for _ in range(layers):
                self.layers.append(PointTransformerLayer(
                    dim = dimension,
                    pos_mlp_hidden_dim = 64,
                    attn_mlp_hidden_mult = 4,
                    num_neighbors = self.neighbors
                ))
    
        def forward(self, pos):
            curr_pos = pos
            for layer in self.layers:
                print(curr_pos)
                curr_pos = layer(self.feats, pos, self.mask)
                print("----")
            return curr_pos
    
    model = PointTransformer(feats, mask)
    model(pos)
    

    The error I'm getting is mat1 and mat2 shapes cannot be multiplied (5x7 and 5x15)

    opened by StellaAthena 1
  • point clouds with different number of points

    point clouds with different number of points

    Great job! I have a question about the number of the points in the point cloud. Do you have any suggestion to deal with point clouds with different point. As I know, point cloud models are always applied in Shapenet which contains point clouds with 2048 points. So what can we do if the number of the point clouds is not constant?

    opened by 1999kevin 0
  • Scalar attention or vector attention in the multi-head variant

    Scalar attention or vector attention in the multi-head variant

    It seems that the implementation of the multi-head point transformer produces scalar attention scores for each head.

    https://github.com/lucidrains/point-transformer-pytorch/blob/99bc3958138d8c9d3b882e4ac50b1a18a86160fe/point_transformer_pytorch/multihead_point_transformer_pytorch.py#L62

    opened by ZikangZhou 2
  • The layer structure and mask

    The layer structure and mask

    Hi,

    Thanks for this contribution. In the implementation of attn_mlp the first linear layer increases the dimension. Is this a standard practice because I did not find any details about this in the paper. Also paper also does not describe use of mask, is this again some standard practice for attention layers?

    Thanks!!

    opened by ayushais 1
  • Invariant to cardinality?

    Invariant to cardinality?

    Dear Authors, In your paper you wrote: "The layer is invariant to permutation and cardinality and is thus inherently suited to point cloud processing."

    I do not understand this statement, because your PointTransformerLayer https://github.com/lucidrains/point-transformer-pytorch/blob/main/point_transformer_pytorch/point_transformer_pytorch.py#L31 requires the dim parameter in initialization. So it always expects dim elements in input. What if a point cloud has dim+1 points?

    Thank you in advance.

    opened by decadenza 0
  • Cost too much memory

    Cost too much memory

    I'm not sure whether I used the point-transformer correctly: I just implemented one block for training, and the data shape of (x, pos) in each gpu are both [16, 2048, 3], later I was informed that my gpu is running out of the memory(11.77 GB total capacity)

    opened by JLU-Neal 9
Releases(0.1.5)
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Fangjian Li 3 Dec 28, 2021
PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.

MuseMorphose This repository contains the official implementation of the following paper: Shih-Lun Wu, Yi-Hsuan Yang MuseMorphose: Full-Song and Fine-

Yating Music, Taiwan AI Labs 142 Jan 08, 2023
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Yutong Zhang 4 Sep 08, 2022
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.

Pytorch Implementation of Improv RNN Overview This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Mage

Sebastian Murgul 3 Nov 11, 2022
This is a repository for a semantic segmentation inference API using the OpenVINO toolkit

BMW-IntelOpenVINO-Segmentation-Inference-API This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported

BMW TechOffice MUNICH 34 Nov 24, 2022
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

NVIDIA Research Projects 10.1k Dec 28, 2022
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
An updated version of virtual model making

Model-Swap-Face v2   这个项目是基于stylegan2 pSp制作的,比v1版本Model-Swap-Face在推理速度和图像质量上有一定提升。主要的功能是将虚拟模特进行环球不同区域的风格转换,目前转换器提供西欧模特、东亚模特和北非模特三种主流的风格样式,可帮我们实现生产资料零成

seeprettyface.com 62 Dec 09, 2022
Code for classifying international patents based on the text of their titles/abstracts

Patent Classification Goal: To train a machine learning classifier that can automatically classify international patents downloaded from the WIPO webs

Prashanth Rao 1 Nov 08, 2022
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
GANSketchingJittor - Implementation of Sketch Your Own GAN in Jittor

GANSketching in Jittor Implementation of (Sketch Your Own GAN) in Jittor(计图). Or

Bernard Tan 10 Jul 02, 2022
Automated detection of anomalous exoplanet transits in light curve data.

Automatically detecting anomalous exoplanet transits This repository contains the source code for the paper "Automatically detecting anomalous exoplan

1 Feb 01, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022