The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Overview

Neural Deformation Graphs

Project Page | Paper | Video


Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction
Aljaž Božič, Pablo Palafox, Michael Zollhöfer, Justus Thies, Angela Dai, Matthias Nießner
CVPR 2021 (Oral Presentation)

This repository contains the code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Specifically, we implicitly model a deformation graph via a deep neural network and empose per-frame viewpoint consistency as well as inter-frame graph and surface consistency constraints in a self-supervised fashion.

That results in a differentiable construction of a deformation graph that is able to handle deformations present in the whole sequence.

Install all dependencies

  • Download the latest conda here.

  • To create a conda environment with all the required packages using conda run the following command:

conda env create -f resources/env.yml

The above command creates a conda environment with the name ndg.

  • Compile external dependencies inside external directory by executing:
conda activate ndg
./build_external.sh

The external dependencies are PyMarchingCubes, gaps and Eigen.

Generate data for visualization & training

In our experiments we use depth inputs from 4 camera views. These depth maps were captured with 4 Kinect Azure sensors. For quantitative evaluation we also used synthetic data, where 4 depth views were rendered from ground truth meshes. In both cases, screened Poisson reconstruction (implemented in MeshLab) was used to obtain meshes for data generation. An example sequence of meshes of a synthetic doozy sequence can be downloaded here.

To generate training data from these meshes, they need to be put into a directory out/meshes/doozy. Then the following code executes data generation, producing generated data samples in out/dataset/doozy:

./generate_data.sh

Visualize neural deformation graphs using pre-trained models

After data generation you can already check out the neural deformation graph estimation using a pre-trained model checkpoint. You need to place it into the out/models directory, and run visualization:

./viz.sh

Reconstruction visualization can take longer, if you want to check out graphs only, you can uncomment --viz_only_graph argument in viz.sh.

Within the Open3D viewer, you can navigate different settings using these keys:

  • N: toggle graph nodes and edges
  • G: toggle ground truth
  • D: show next
  • A: show previous
  • S: toggle smooth shading

Train a model from scratch

You can train a model from scratch using train_graph.sh and train_shape.sh scripts, in that order. The model checkpoints and tensorboard stats are going to be stored into out/experiments.

Optimize graph

To estimate a neural deformation graph from input observations, you need to specify the dataset to be used (inside out/dataset, should be generated before hand), and then training can be started using the following script:

./train_graph.sh

We ran all our experiments on NVidia 2080Ti GPU, for about 500k iterations. After the model has converged, you can visualize the optimized neural deformation graph using viz.sh script.

To check out convergence, you can visualize loss curves with tensorboard by running the following inside out/experiments directory:

tensorboard --logdir=.

Optimize shape

To optimize shape, you need to initialize the graph with a pre-trained graph model. That means that inside train_shape.sh you need to specify the graph_model_path, which should point to the converged checkpoint of the graph model (graph model usually converges at around 500k iterations). Multi-MLP model can then be optimized to reconstruct shape geometry by running:

./train_shape.sh

Similar to graph optimization also shape optimization converges in about 500k iterations.

Citation

If you find our work useful in your research, please consider citing:

@article{bozic2021neuraldeformationgraphs,
title={Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction},
author={Bo{\v{z}}i{\v{c}}, Alja{\v{z}} and Palafox, Pablo and Zollh{\"o}fer, Michael and Dai, Angela and Thies, Justus and Nie{\ss}ner, Matthias},
journal={CVPR},
year={2021}
}

Related work

Some other related works on non-rigid reconstruction by our group:

License

The code from this repository is released under the MIT license, except where otherwise stated (i.e., Eigen).

Owner
Aljaz Bozic
PhD Student at Visual Computing Group
Aljaz Bozic
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
Visual Question Answering in Pytorch

Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa

Remi 672 Jan 01, 2023
SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

59 Feb 25, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation

Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation [Arxiv] [Video] Evaluation code for Unrestricted Facial Geometry Reconstr

Matan Sela 242 Dec 30, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
The official PyTorch implementation of paper BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition

BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition Boyan Zhou, Quan Cui, Xiu-Shen Wei*, Zhao-Min Chen This repo

Megvii-Nanjing 616 Dec 21, 2022
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)

Transfer Learning for Text Classification with Tensorflow Tensorflow implementation of Semi-supervised Sequence Learning(https://arxiv.org/abs/1511.01

DONGJUN LEE 82 Oct 22, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022