a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

Overview

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

1. Notes

This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" [https://arxiv.org/abs/2107.08430]
The repo is still under development

2. Environment

pytorch>=1.7.0, python>=3.6, Ubuntu/Windows, see more in 'requirements.txt'

cd /path/to/your/work
git clone https://github.com/zhangming8/yolox-pytorch.git
cd yolox-pytorch
download pre-train weights in Model Zoo to /path/to/your/work/weights

3. Object Detection

Model Zoo

All weights can be downloaded from GoogleDrive or BaiduDrive (code:bc72)

Model test size mAPval
0.5:0.95
mAPtest
0.5:0.95
Params
(M)
yolox-nano 416 25.4 25.7 0.91
yolox-tiny 416 33.1 33.2 5.06
yolox-s 640 39.3 39.6 9.0
yolox-m 640 46.2 46.4 25.3
yolox-l 640 49.5 50.0 54.2
yolox-x 640 50.5 51.1 99.1
yolox-x 800 51.2 51.9 99.1

mAP was reevaluated on COCO val2017 and test2017, and some results are slightly better than the official implement YOLOX. You can reproduce them by scripts in 'evaluate.sh'

Dataset

download COCO:
http://images.cocodataset.org/zips/train2017.zip
http://images.cocodataset.org/zips/val2017.zip
http://images.cocodataset.org/annotations/annotations_trainval2017.zip

unzip and put COCO dataset in following folders:
/path/to/dataset/annotations/instances_train2017.json
/path/to/dataset/annotations/instances_val2017.json
/path/to/dataset/images/train2017/*.jpg
/path/to/dataset/images/val2017/*.jpg

change opt.dataset_path = "/path/to/dataset" in 'config.py'

Train

See more example in 'train.sh'
a. Train from scratch:(backbone="CSPDarknet-s" means using yolox-s, and you can change it, eg: CSPDarknet-nano, tiny, s, m, l, x)
python train.py gpus='0' backbone="CSPDarknet-s" num_epochs=300 exp_id="coco_CSPDarknet-s_640x640" use_amp=True val_intervals=2 data_num_workers=6 batch_size=48

b. Finetune, download pre-trained weight on COCO and finetune on customer dataset:
python train.py gpus='0' backbone="CSPDarknet-s" num_epochs=300 exp_id="coco_CSPDarknet-s_640x640" use_amp=True val_intervals=2 data_num_workers=6 batch_size=48 load_model="../weights/yolox-s.pth"

c. Resume, you can use 'resume=True' when your training is accidentally stopped:
python train.py gpus='0' backbone="CSPDarknet-s" num_epochs=300 exp_id="coco_CSPDarknet-s_640x640" use_amp=True val_intervals=2 data_num_workers=6 batch_size=48 load_model="exp/coco_CSPDarknet-s_640x640/model_last.pth" resume=True

Some Tips:

a. You can also change params in 'train.sh'(these params will replace opt.xxx in config.py) and use 'nohup sh train.sh &' to train
b. Multi-gpu train: set opt.gpus = "3,5,6,7" in 'config.py' or set gpus="3,5,6,7" in 'train.sh'
c. If you want to close multi-size training, change opt.random_size = None in 'config.py' or set random_size=None in 'train.sh'
d. random_size = (14, 26) means: Randomly select an integer from interval (14,26) and multiply by 32 as the input size
e. Visualized log by tensorboard: 
    tensorboard --logdir exp/your_exp_id/logs_2021-08-xx-xx-xx and visit http://localhost:6006
   Your can also use the following shell scripts:
    (1) grep 'train epoch' exp/your_exp_id/logs_2021-08-xx-xx-xx/log.txt
    (2) grep 'val epoch' exp/your_exp_id/logs_2021-08-xx-xx-xx/log.txt

Evaluate

Module weights will be saved in './exp/your_exp_id/model_xx.pth'
change 'load_model'='weight/path/to/evaluate.pth' and backbone='backbone-type' in 'evaluate.sh'
sh evaluate.sh

Predict/Inference/Demo

a. Predict images, change img_dir and load_model
python predict.py gpus='0' backbone="CSPDarknet-s" vis_thresh=0.3 load_model="exp/coco_CSPDarknet-s_640x640/model_best.pth" img_dir='/path/to/dataset/images/val2017'

b. Predict video
python predict.py gpus='0' backbone="CSPDarknet-s" vis_thresh=0.3 load_model="exp/coco_CSPDarknet-s_640x640/model_best.pth" video_dir='/path/to/your/video.mp4'

You can also change params in 'predict.sh', and use 'sh predict.sh'

Train Customer Dataset(VOC format)

1. put your annotations(.xml) and images(.jpg) into:
    /path/to/voc_data/images/train2017/*.jpg  # train images
    /path/to/voc_data/images/train2017/*.xml  # train xml annotations
    /path/to/voc_data/images/val2017/*.jpg  # val images
    /path/to/voc_data/images/val2017/*.xml  # val xml annotations

2. change opt.label_name = ['your', 'dataset', 'label'] in 'config.py'
   change opt.dataset_path = '/path/to/voc_data' in 'config.py'

3. python tools/voc_to_coco.py
   Converted COCO format annotation will be saved into:
    /path/to/voc_data/annotations/instances_train2017.json
    /path/to/voc_data/annotations/instances_val2017.json

4. (Optional) you can visualize the converted annotations by:
    python tools/show_coco_anns.py
    Here is an analysis of the COCO annotation https://blog.csdn.net/u010397980/article/details/90341223?spm=1001.2014.3001.5501

5. run train.sh, evaluate.sh, predict.sh (are the same as COCO)

4. Multi/One-class Multi-object Tracking(MOT)

one-class/single-class MOT Dataset

DOING

Multi-class MOT Dataset

DOING

Train

DOING

Evaluate

DOING

Predict/Inference/Demo

DOING

5. Acknowledgement

https://github.com/Megvii-BaseDetection/YOLOX
https://github.com/PaddlePaddle/PaddleDetection
https://github.com/open-mmlab/mmdetection
https://github.com/xingyizhou/CenterNet
Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本

用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本

72 Dec 17, 2022
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
U-Net: Convolutional Networks for Biomedical Image Segmentation

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Yihui He 401 Nov 21, 2022
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022
A trashy useless Latin programming language written in python.

Codigum! The first programming langage in latin! (please keep your eyes closed when if you read the source code) It is pretty useless though. Document

Bic 2 Oct 25, 2021
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds The why Im

3 Mar 29, 2022
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023