Sound Event Detection with FilterAugment

Overview

Sound Event Detection with FilterAugment

Official implementation of

  • Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Challenge Task 4 technical report)
    by Hyeonuk Nam, Byeong-Yun Ko, Gyeong-Tae Lee, Seong-Hu Kim, Won-Ho Jung, Sang-Min Choi, Yong-Hwa Park
    DCASE arXiv
    - arXiv version has updates on some minor errors

  • FilterAugment: An Acoustic Environmental Data Augmentation Method (Submitted to ICASSP 2022)
    by Hyeonuk Nam, Seong-Hu Kim, Yong-Hwa Park
    arXiv

    • Implementation for 2nd paper that includes updated version of FilterAugment is incomplete for now. It will be updated soon!

Ranked on [3rd place] in IEEE DCASE 2021 Task 4.

FilterAugment

Filter Augment is an audio data augmentation method newly proposed on the above papers for training acoustic models in audio/speech tasks. It applies random weights on randomly selected frequency bands. For more details, refer to the papers mentioned above.

  • This example shows two types of FilterAugment applied on log mel spectrogram of a 10-second audio clip. (a) shows original log mel spectrogram, (b) shows log mel spectrogram applied by step type FilterAugment (c) shows log mel spectrogram applied by linear type Filter Augment.
  • Applied filters are shown below. Filter (d) is applied on (a) to result in (b), and filter (e) is applied on (a) to result in (c)











  • Step type FilterAugment shows several frequency bands that are uniformly increased or decreased in amplitude, while linear type FilterAugment shows continous filter that shows certain peaks and dips.
  • On our participation on DCASE2021 challenge task 4, we used prototype FilterAugment which is step type FilterAugment without hyperparameter minimum bandwith. The code for this prototype is defiend as "filt_aug_dcase" at utils/data_aug.py @ line 107
  • Code for updated FilterAugment including step and linear type for ICASSP submission is defiend as "filt_aug_icassp" at utils/data_aug.py @ line 126

Requirements

Python version of 3.7.10 is used with following libraries

  • pytorch==1.8.0
  • pytorch-lightning==1.2.4
  • pytorchaudio==0.8.0
  • scipy==1.4.1
  • pandas==1.1.3
  • numpy==1.19.2

other requrements in requirements.txt

Datasets

You can download datasets by reffering to DCASE 2021 Task 4 description page or DCASE 2021 Task 4 baseline. Then, set the dataset directories in config yaml files accordingly. You need DESED real datasets (weak/unlabeled in domain/validation/public eval) and DESED synthetic datasets (train/validation).

Training

You can train and save model in exps folder by running:

python main.py

model settings:

There are 5 configuration files in this repo. Default setting is (ICASSP setting)(./configs/config_icassp.yaml), the optimal linear type FilterAugment described in paper submitted to ICASSP. There are 4 other model settings in DCASE tech report. To train for model 1, 2, 3 or 4 from the DCASE tech report or ICASSP setting, you can run the following code instead.

# for example, to train model 3:
python main.py --confing model3

Results of DCASE settings (model 1~4) on DESED Real Validation dataset:

Model PSDS-scenario1 PSDS-scenario2 Collar-based F1
1 0.408 0.628 49.0%
2 0.414 0.608 49.2%
3 0.381 0.660 31.8%
4 0.052 0.783 19.8%
  • these results are based on train models with single run for each setting

Results of ICASSP settings on DESED Real Validation dataset:

Methods PSDS-scenario1 PSDS-scenario2 Collar-based F1 Intersection-based F1
w/o FiltAug 0.387 0.598 47.7% 70.8%
step FiltAug 0.412 0.634 47.4% 71.2%
linear FiltAug 0.413 0.636 49.0% 73.5%
  • These results are based on max values of each metric for 3 separate runs on each setting (refer to paper for details).

Reference

DCASE 2021 Task 4 baseline

Citation & Contact

If this repository helped your works, please cite papers below!

@techreport{Nam2021,
    Author = "Nam, Hyeonuk and Ko, Byeong-Yun and Lee, Gyeong-Tae and Kim, Seong-Hu and Jung, Won-Ho and Choi, Sang-Min and Park, Yong-Hwa",
    title = "Heavily Augmented Sound Event Detection utilizing Weak Predictions",
    institution = "DCASE2021 Challenge",
    year = "2021",
    month = "June",
}

@article{nam2021filteraugment,
  title={FilterAugment: An Acoustic Environmental Data Augmentation Method},
  author={Hyeonuk Nam and Seoung-Hu Kim and Yong-Hwa Park},
  journal={arXiv preprint arXiv:2107.13260},
  year={2021}
}

Please contact Hyeonuk Nam at [email protected] for any query.

Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
A system for quickly generating training data with weak supervision

Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat

Snorkel Team 5.4k Jan 02, 2023
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
Transformer in Vision

Transformer-in-Vision Recent Transformer-based CV and related works. Welcome to comment/contribute! Keep updated. Resource SCENIC: A JAX Library for C

Yong-Lu Li 1.1k Dec 30, 2022
Yet another video caption

Yet another video caption

Fan Zhimin 5 May 26, 2022
Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Single Optical Path

Keyhole Imaging Code & Dataset Code associated with the paper "Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Singl

Stanford Computational Imaging Lab 20 Feb 03, 2022
Let Python optimize the best stop loss and take profits for your TradingView strategy.

TradingView Machine Learning TradeView is a free and open source Trading View bot written in Python. It is designed to support all major exchanges. It

Robert Roman 473 Jan 09, 2023
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

BMW TechOffice MUNICH 56 Nov 24, 2022
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL BASALT Challenge.

KAIROS MineRL BASALT Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL B

Vinicius G. Goecks 37 Oct 30, 2022
Misc YOLOL scripts for use in the Starbase space sandbox videogame

starbase-misc Misc YOLOL scripts for use in the Starbase space sandbox videogame. Each directory contains standalone YOLOL scripts. They don't really

4 Oct 17, 2021
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Sound and Music Analysis (SoMA) Group 29 Nov 19, 2022
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022
Source code for Transformer-based Multi-task Learning for Disaster Tweet Categorisation (UCD's participation in TREC-IS 2020A, 2020B and 2021A).

Source code for "UCD participation in TREC-IS 2020A, 2020B and 2021A". *** update at: 2021/05/25 This repo so far relates to the following work: Trans

Congcong Wang 4 Oct 19, 2021
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
Supervised forecasting of sequential data in Python.

Supervised forecasting of sequential data in Python. Intro Supervised forecasting is the machine learning task of making predictions for sequential da

The Alan Turing Institute 54 Nov 15, 2022