Sound Event Detection with FilterAugment

Overview

Sound Event Detection with FilterAugment

Official implementation of

  • Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Challenge Task 4 technical report)
    by Hyeonuk Nam, Byeong-Yun Ko, Gyeong-Tae Lee, Seong-Hu Kim, Won-Ho Jung, Sang-Min Choi, Yong-Hwa Park
    DCASE arXiv
    - arXiv version has updates on some minor errors

  • FilterAugment: An Acoustic Environmental Data Augmentation Method (Submitted to ICASSP 2022)
    by Hyeonuk Nam, Seong-Hu Kim, Yong-Hwa Park
    arXiv

    • Implementation for 2nd paper that includes updated version of FilterAugment is incomplete for now. It will be updated soon!

Ranked on [3rd place] in IEEE DCASE 2021 Task 4.

FilterAugment

Filter Augment is an audio data augmentation method newly proposed on the above papers for training acoustic models in audio/speech tasks. It applies random weights on randomly selected frequency bands. For more details, refer to the papers mentioned above.

  • This example shows two types of FilterAugment applied on log mel spectrogram of a 10-second audio clip. (a) shows original log mel spectrogram, (b) shows log mel spectrogram applied by step type FilterAugment (c) shows log mel spectrogram applied by linear type Filter Augment.
  • Applied filters are shown below. Filter (d) is applied on (a) to result in (b), and filter (e) is applied on (a) to result in (c)











  • Step type FilterAugment shows several frequency bands that are uniformly increased or decreased in amplitude, while linear type FilterAugment shows continous filter that shows certain peaks and dips.
  • On our participation on DCASE2021 challenge task 4, we used prototype FilterAugment which is step type FilterAugment without hyperparameter minimum bandwith. The code for this prototype is defiend as "filt_aug_dcase" at utils/data_aug.py @ line 107
  • Code for updated FilterAugment including step and linear type for ICASSP submission is defiend as "filt_aug_icassp" at utils/data_aug.py @ line 126

Requirements

Python version of 3.7.10 is used with following libraries

  • pytorch==1.8.0
  • pytorch-lightning==1.2.4
  • pytorchaudio==0.8.0
  • scipy==1.4.1
  • pandas==1.1.3
  • numpy==1.19.2

other requrements in requirements.txt

Datasets

You can download datasets by reffering to DCASE 2021 Task 4 description page or DCASE 2021 Task 4 baseline. Then, set the dataset directories in config yaml files accordingly. You need DESED real datasets (weak/unlabeled in domain/validation/public eval) and DESED synthetic datasets (train/validation).

Training

You can train and save model in exps folder by running:

python main.py

model settings:

There are 5 configuration files in this repo. Default setting is (ICASSP setting)(./configs/config_icassp.yaml), the optimal linear type FilterAugment described in paper submitted to ICASSP. There are 4 other model settings in DCASE tech report. To train for model 1, 2, 3 or 4 from the DCASE tech report or ICASSP setting, you can run the following code instead.

# for example, to train model 3:
python main.py --confing model3

Results of DCASE settings (model 1~4) on DESED Real Validation dataset:

Model PSDS-scenario1 PSDS-scenario2 Collar-based F1
1 0.408 0.628 49.0%
2 0.414 0.608 49.2%
3 0.381 0.660 31.8%
4 0.052 0.783 19.8%
  • these results are based on train models with single run for each setting

Results of ICASSP settings on DESED Real Validation dataset:

Methods PSDS-scenario1 PSDS-scenario2 Collar-based F1 Intersection-based F1
w/o FiltAug 0.387 0.598 47.7% 70.8%
step FiltAug 0.412 0.634 47.4% 71.2%
linear FiltAug 0.413 0.636 49.0% 73.5%
  • These results are based on max values of each metric for 3 separate runs on each setting (refer to paper for details).

Reference

DCASE 2021 Task 4 baseline

Citation & Contact

If this repository helped your works, please cite papers below!

@techreport{Nam2021,
    Author = "Nam, Hyeonuk and Ko, Byeong-Yun and Lee, Gyeong-Tae and Kim, Seong-Hu and Jung, Won-Ho and Choi, Sang-Min and Park, Yong-Hwa",
    title = "Heavily Augmented Sound Event Detection utilizing Weak Predictions",
    institution = "DCASE2021 Challenge",
    year = "2021",
    month = "June",
}

@article{nam2021filteraugment,
  title={FilterAugment: An Acoustic Environmental Data Augmentation Method},
  author={Hyeonuk Nam and Seoung-Hu Kim and Yong-Hwa Park},
  journal={arXiv preprint arXiv:2107.13260},
  year={2021}
}

Please contact Hyeonuk Nam at [email protected] for any query.

A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
Pytorch implementation of Hinton's Dynamic Routing Between Capsules

pytorch-capsule A Pytorch implementation of Hinton's "Dynamic Routing Between Capsules". https://arxiv.org/pdf/1710.09829.pdf Thanks to @naturomics fo

Tim Omernick 625 Oct 27, 2022
torchlm is aims to build a high level pipeline for face landmarks detection, it supports training, evaluating, exporting, inference(Python/C++) and 100+ data augmentations

💎A high level pipeline for face landmarks detection, supports training, evaluating, exporting, inference and 100+ data augmentations, compatible with torchvision and albumentations, can easily instal

DefTruth 142 Dec 25, 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022
Implementation of Basic Machine Learning Algorithms on small datasets using Scikit Learn.

Basic Machine Learning Algorithms All the basic Machine Learning Algorithms are implemented in Python using libraries Acknowledgements Machine Learnin

Piyal Banik 47 Oct 16, 2022
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

GD-Thief Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includ

Antonio Piazza 39 Dec 27, 2022
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
Official Implementation of LARGE: Latent-Based Regression through GAN Semantics

LARGE: Latent-Based Regression through GAN Semantics [Project Website] [Google Colab] [Paper] LARGE: Latent-Based Regression through GAN Semantics Yot

83 Dec 06, 2022
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.

Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in

Pre 2 Nov 10, 2021
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
Everything about being a TA for ITP/AP course!

تی‌ای بودن! تی‌ای یا دستیار استاد از نقش‌های رایج بین دانشجویان مهندسی است، این ریپوزیتوری قرار است نکات مهم درمورد تی‌ای بودن و تی ای شدن را به ما نش

<a href=[email protected]"> 14 Sep 10, 2022
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023
The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)

A mini-scale reproduction code of the AlphaStar program. Note: the original AlphaStar is the AI proposed by DeepMind to play StarCraft II.

Ruo-Ze Liu 216 Jan 04, 2023
Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

Kai Ninomiya 5 Jul 18, 2022