Sound Event Detection with FilterAugment

Overview

Sound Event Detection with FilterAugment

Official implementation of

  • Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Challenge Task 4 technical report)
    by Hyeonuk Nam, Byeong-Yun Ko, Gyeong-Tae Lee, Seong-Hu Kim, Won-Ho Jung, Sang-Min Choi, Yong-Hwa Park
    DCASE arXiv
    - arXiv version has updates on some minor errors

  • FilterAugment: An Acoustic Environmental Data Augmentation Method (Submitted to ICASSP 2022)
    by Hyeonuk Nam, Seong-Hu Kim, Yong-Hwa Park
    arXiv

    • Implementation for 2nd paper that includes updated version of FilterAugment is incomplete for now. It will be updated soon!

Ranked on [3rd place] in IEEE DCASE 2021 Task 4.

FilterAugment

Filter Augment is an audio data augmentation method newly proposed on the above papers for training acoustic models in audio/speech tasks. It applies random weights on randomly selected frequency bands. For more details, refer to the papers mentioned above.

  • This example shows two types of FilterAugment applied on log mel spectrogram of a 10-second audio clip. (a) shows original log mel spectrogram, (b) shows log mel spectrogram applied by step type FilterAugment (c) shows log mel spectrogram applied by linear type Filter Augment.
  • Applied filters are shown below. Filter (d) is applied on (a) to result in (b), and filter (e) is applied on (a) to result in (c)











  • Step type FilterAugment shows several frequency bands that are uniformly increased or decreased in amplitude, while linear type FilterAugment shows continous filter that shows certain peaks and dips.
  • On our participation on DCASE2021 challenge task 4, we used prototype FilterAugment which is step type FilterAugment without hyperparameter minimum bandwith. The code for this prototype is defiend as "filt_aug_dcase" at utils/data_aug.py @ line 107
  • Code for updated FilterAugment including step and linear type for ICASSP submission is defiend as "filt_aug_icassp" at utils/data_aug.py @ line 126

Requirements

Python version of 3.7.10 is used with following libraries

  • pytorch==1.8.0
  • pytorch-lightning==1.2.4
  • pytorchaudio==0.8.0
  • scipy==1.4.1
  • pandas==1.1.3
  • numpy==1.19.2

other requrements in requirements.txt

Datasets

You can download datasets by reffering to DCASE 2021 Task 4 description page or DCASE 2021 Task 4 baseline. Then, set the dataset directories in config yaml files accordingly. You need DESED real datasets (weak/unlabeled in domain/validation/public eval) and DESED synthetic datasets (train/validation).

Training

You can train and save model in exps folder by running:

python main.py

model settings:

There are 5 configuration files in this repo. Default setting is (ICASSP setting)(./configs/config_icassp.yaml), the optimal linear type FilterAugment described in paper submitted to ICASSP. There are 4 other model settings in DCASE tech report. To train for model 1, 2, 3 or 4 from the DCASE tech report or ICASSP setting, you can run the following code instead.

# for example, to train model 3:
python main.py --confing model3

Results of DCASE settings (model 1~4) on DESED Real Validation dataset:

Model PSDS-scenario1 PSDS-scenario2 Collar-based F1
1 0.408 0.628 49.0%
2 0.414 0.608 49.2%
3 0.381 0.660 31.8%
4 0.052 0.783 19.8%
  • these results are based on train models with single run for each setting

Results of ICASSP settings on DESED Real Validation dataset:

Methods PSDS-scenario1 PSDS-scenario2 Collar-based F1 Intersection-based F1
w/o FiltAug 0.387 0.598 47.7% 70.8%
step FiltAug 0.412 0.634 47.4% 71.2%
linear FiltAug 0.413 0.636 49.0% 73.5%
  • These results are based on max values of each metric for 3 separate runs on each setting (refer to paper for details).

Reference

DCASE 2021 Task 4 baseline

Citation & Contact

If this repository helped your works, please cite papers below!

@techreport{Nam2021,
    Author = "Nam, Hyeonuk and Ko, Byeong-Yun and Lee, Gyeong-Tae and Kim, Seong-Hu and Jung, Won-Ho and Choi, Sang-Min and Park, Yong-Hwa",
    title = "Heavily Augmented Sound Event Detection utilizing Weak Predictions",
    institution = "DCASE2021 Challenge",
    year = "2021",
    month = "June",
}

@article{nam2021filteraugment,
  title={FilterAugment: An Acoustic Environmental Data Augmentation Method},
  author={Hyeonuk Nam and Seoung-Hu Kim and Yong-Hwa Park},
  journal={arXiv preprint arXiv:2107.13260},
  year={2021}
}

Please contact Hyeonuk Nam at [email protected] for any query.

Beancount-mercury - Beancount importer for Mercury Startup Checking

beancount-mercury beancount-mercury provides an Importer for converting CSV expo

Michael Lynch 4 Oct 31, 2022
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare

Mohamadreza Rezaei 1 Jan 19, 2022
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022
Official implementation of "Learning Not to Reconstruct" (BMVC 2021)

Official PyTorch implementation of "Learning Not to Reconstruct Anomalies" This is the implementation of the paper "Learning Not to Reconstruct Anomal

Marcella Astrid 13 Dec 04, 2022
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
Using Hotel Data to predict High Value And Potential VIP Guests

Description Using hotel data and AI to predict high value guests and potential VIP guests. Hotel can leverage on prediction resutls to run more effect

HCG 12 Feb 14, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
PyTorch implementation of Densely Connected Time Delay Neural Network

Densely Connected Time Delay Neural Network PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Conne

Ya-Qi Yu 64 Oct 11, 2022
A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022
Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions

EMS-COLS-recourse Initial Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions Folder structure: data folder contains raw an

Prateek Yadav 1 Nov 25, 2022
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022