Code for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelines with Query Variation Generators"

Overview

Query Variation Generators

This repository contains the code and annotation data for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelines with Query Variation Generators".

Setup

Install the requirements using

pip install -r requirements.txt

Steps to reproduce the results

First we need to generate_weak supervsion for the desired test sets. We can do that with the scripts/generate_weak_supervision.py. In the paper we test for TREC-DL ('msmarco-passage/trec-dl-2019/judged') and ANTIQUE ('antique/train/split200-valid'), but any IR-datasets (https://ir-datasets.com/index.html) can be used here (as TASK).

python ${REPO_DIR}/examples/generate_weak_supervision.py 
    --task $TASK \
    --output_dir $OUT_DIR 

This will generate one query variation for each method for the original queries. After this, we manually annotated the query variations generated, in order to keep only valid ones for analysis. For that we use analyze_weak_supervision.py (prepares data for manual anotation) and analyze_auto_query_generation_labeling.py (combines auto labels and anotations.).

However, for reproducing the results we can directly use the annotated query set to test neural ranking models robustness (RQ1):

python ${REPO_DIR}/disentangled_information_needs/evaluation/query_rewriting.py \
        --task 'irds:msmarco-passage/trec-dl-2019/judged' \
        --output_dir $OUT_DIR/ \
        --variations_file $OUT_DIR/$VARIATIONS_FILE_TREC_DL \
        --retrieval_model_name "BM25+KNRM" \
        --train_dataset "irds:msmarco-passage/train" \
        --max_iter $MAX_ITER

by using the annotated variations file directly here "$OUT_DIR/$VARIATIONS_FILE_TREC_DL". The same can be done to run rank fusion (RQ2) by replacing query_rewriting.py with rank_fusion.py.

The scripts evaluate_weak_supervision.sh and evaluate_rank_fusion.sh run all models and datasets for both research questions . The first generates the main table of results, Table 4 in the paper, and the second generates the tables for the rank fusion experiments (only available in the Arxiv version of the paper).

Modules and Folders

  • scripts: Contain most of the analysis scripts and also commands to run entire experiments.
  • examples: Contain an example on how to generate query variations.
  • disentangled_information_needs/evaluation: Scripts to evaluate robustness of models for query variations and also to evaluate rank fusion of query variations.
  • disentangled_information_needs/transformations: Methods to generate query variations.
Owner
Gustavo Penha
Researcher - IR - RecSys - ML - NLP. https://linktr.ee/guzpenha
Gustavo Penha
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
Python version of the amazing Reaction Mechanism Generator (RMG).

Reaction Mechanism Generator (RMG) Description This repository contains the Python version of Reaction Mechanism Generator (RMG), a tool for automatic

Reaction Mechanism Generator 284 Dec 27, 2022
Semantic Segmentation Architectures Implemented in PyTorch

pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i

Meet Shah 3.3k Dec 29, 2022
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
Multiple custom object count and detection using YOLOv3-Tiny method

Electronic-Component-YOLOv3 Introduce This project created to detect, count, and recognize multiple custom object using YOLOv3-Tiny method. The target

Derwin Mahardika 2 Nov 14, 2022
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and ap

3.4k Jan 04, 2023
This is a repository of our model for weakly-supervised video dense anticipation.

Introduction This is a repository of our model for weakly-supervised video dense anticipation. More results on GTEA, Epic-Kitchens etc. will come soon

2 Apr 09, 2022
REBEL: Relation Extraction By End-to-end Language generation

REBEL: Relation Extraction By End-to-end Language generation This is the repository for the Findings of EMNLP 2021 paper REBEL: Relation Extraction By

Babelscape 222 Jan 06, 2023
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
A pyparsing-based library for parsing SOQL statements

CONTRIBUTORS WANTED!! Installation pip install python-soql-parser or, with poetry poetry add python-soql-parser Usage from python_soql_parser import p

Kicksaw 0 Jun 07, 2022
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022
SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

CORNELLSASLAB SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab Instructions: This python code can be used to convert SAS out

2 Jan 26, 2022
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 98 Dec 21, 2022
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022