Download and preprocess popular sequential recommendation datasets

Overview

Build Status codebeat badge

Sequential Recommendation Datasets

This repository collects some commonly used sequential recommendation datasets in recent research papers and provides a tool for downloading, preprocessing and batch-loading those datasets. The preprocessing method can be customized based on the task, for example: short-term recommendation (including session-based recommendation) and long-short term recommendation. Loading has faster version which intergrates the DataLoader of PyTorch.

Datasets

Install this tool

Stable version

pip install -U srdatasets —-user

Latest version

pip install git+https://github.com/guocheng2018/sequential-recommendation-datasets.git --user

Download datasets

Run the command below to download datasets. As some datasets are not directly accessible, you'll be warned to download them manually and place them somewhere it tells you.

srdatasets download --dataset=[dataset_name]

To get a view of downloaded and processed status of all datasets, run

srdatasets info

Process datasets

The generic processing command is

srdatasets process --dataset=[dataset_name] [--options]

Splitting options

Two dataset splitting methods are provided: user-based and time-based. User-based means that splitting is executed on every user behavior sequence given the ratio of validation set and test set, while time-based means that splitting is based on the date of user behaviors. After splitting some dataset, two processed datasets are generated, one for development, which uses the validation set as the test set, the other for test, which contains the full training set.

--split-by     User or time (default: user)
--test-split   Proportion of test set to full dataset (default: 0.2)
--dev-split    Proportion of validation set to full training set (default: 0.1)

NOTE: time-based splitting need you to manually input days at console by tipping you total days of that dataset, since you may not know.

Task related options

For short term recommnedation task, you use previous input-len items to predict next target-len items. To make user interests more focused, user behavior sequences can also be cut into sessions if session-interval is given. If the number of previous items is smaller than input-len, 0 is padded to the left.

For long and short term recommendation task, you use pre-sessions previous sessions and current session to predict target-len items. The target items are picked randomly or lastly from current session. So the length of current session is max-session-len - target-len while the length of any previous session is max-session-len. If any previous session or current session is shorter than the preset length, 0 is padded to the left.

--task              Short or long-short (default: short)
--input-len         Number of previous items (default: 5)
--target-len        Number of target items (default: 1)
--pre-sessions      Number of previous sessions (default: 10)
--pick-targets      Randomly or lastly pick items from current session (default: random)
--session-interval  Session splitting interval (minutes)  (default: 0)
--min-session-len   Sessions less than this in length will be dropped  (default: 2)
--max-session-len   Sessions greater than this in length will be cut  (default: 20)

Common options

--min-freq-item        Items less than this in frequency will be dropped (default: 5)
--min-freq-user        Users less than this in frequency will be dropped (default: 5)
--no-augment           Do not use data augmentation (default: False)
--remove-duplicates    Remove duplicated items in user sequence or user session (if splitted) (default: False)

Dataset related options

--rating-threshold  Interactions with rating less than this will be dropped (Amazon, Movielens, Yelp) (default: 4)
--item-type         Recommend artists or songs (Lastfm) (default: song)

Version

By using different options, a dataset will have many processed versions. You can run the command below to get configurations and statistics of all processed versions of some dataset. The config id shown in output is a required argument of DataLoader.

srdatasets info --dataset=[dataset_name]

DataLoader

DataLoader is a built-in class that makes loading processed datasets easy. Practically, once initialized a dataloder by passing the dataset name, processed version (config id), batch_size and a flag to load training data or test data, you can then loop it to get batch data. Considering that some models use rank-based learning, negative sampling is intergrated into DataLoader. The negatives are sampled from all items except items in current data according to popularity. By default it (negatives_per_target) is turned off. Also, the time of user behaviors is sometimes an important feature, you can include it into batch data by setting include_timestmap to True.

Arguments

  • dataset_name: dataset name (case insensitive)
  • config_id: configuration id
  • batch_size: batch size (default: 1)
  • train: load training dataset (default: True)
  • development: load the dataset aiming for development (default: False)
  • negatives_per_target: number of negative samples per target (default: 0)
  • include_timestamp: add timestamps to batch data (default: False)
  • drop_last: drop last incomplete batch (default: False)

Attributes

  • num_users: total users in training dataset
  • num_items: total items in training dataset (not including the padding item 0)

Initialization example

from srdatasets.dataloader import DataLoader

trainloader = DataLoader("amazon-books", "c1574673118829", batch_size=32, train=True, negatives_per_target=5, include_timestamp=True)
testloader = DataLoader("amazon-books", "c1574673118829", batch_size=32, train=False, include_timestamp=True)

For pytorch users, there is a wrapper implementation of torch.utils.data.DataLoader, you can then set keyword arguments like num_workers and pin_memory to speed up loading data

from srdatasets.dataloader_pytorch import DataLoader

trainloader = DataLoader("amazon-books", "c1574673118829", batch_size=32, train=True, negatives_per_target=5, include_timestamp=True, num_workers=8, pin_memory=True)
testloader = DataLoader("amazon-books", "c1574673118829", batch_size=32, train=False, include_timestamp=True, num_workers=8, pin_memory=True)

Iteration template

For short term recommendation task

for epoch in range(10):
    # Train
    for users, input_items, target_items, input_item_timestamps, target_item_timestamps, negative_samples in trainloader:
        # Shape
        #   users:                  (batch_size,)
        #   input_items:            (batch_size, input_len)
        #   target_items:           (batch_size, target_len)
        #   input_item_timestamps:  (batch_size, input_len)
        #   target_item_timestamps: (batch_size, target_len)
        #   negative_samples:       (batch_size, target_len, negatives_per_target)
        #
        # DataType
        #   numpy.ndarray or torch.LongTensor
        pass

    # Test
    for users, input_items, target_items, input_item_timestamps, target_item_timestamps in testloader:
        pass

For long and short term recommendation task

for epoch in range(10):
    # Train
    for users, pre_sessions_items, cur_session_items, target_items, pre_sessions_item_timestamps, cur_session_item_timestamps, target_item_timestamps, negative_samples in trainloader:
        # Shape
        #   users:                          (batch_size,)
        #   pre_sessions_items:             (batch_size, pre_sessions * max_session_len)
        #   cur_session_items:              (batch_size, max_session_len - target_len)
        #   target_items:                   (batch_size, target_len)
        #   pre_sessions_item_timestamps:   (batch_size, pre_sessions * max_session_len)
        #   cur_session_item_timestamps:    (batch_size, max_session_len - target_len)
        #   target_item_timestamps:         (batch_size, target_len)
        #   negative_samples:               (batch_size, target_len, negatives_per_target)
        #
        # DataType
        #   numpy.ndarray or torch.LongTensor
        pass

    # Test
    for users, pre_sessions_items, cur_session_items, target_items, pre_sessions_item_timestamps, cur_session_item_timestamps, target_item_timestamps in testloader:
        pass

Disclaimers

This repo does not host or distribute any of the datasets, it is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
Train emoji embeddings based on emoji descriptions.

emoji2vec This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko

Miruna Pislar 17 Sep 03, 2022
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-ba

PyKale 370 Dec 27, 2022
The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble

Wordle RL The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble I know there are more deterministic

Aditya Arora 3 Feb 22, 2022
QHack—the quantum machine learning hackathon

Official repo for QHack—the quantum machine learning hackathon

Xanadu 72 Dec 21, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

Yinyu Nie 41 Dec 19, 2022
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our paper "Accounting for Gaussian Process Imprecision in Bayesian Optimization"

Prior-RObust Bayesian Optimization (PROBO) Introduction, TOC This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our

Julian Rodemann 2 Mar 19, 2022
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

meshtalk This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite @inproceedings{richard2021mesht

Meta Research 221 Jan 06, 2023
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 Jittor code will come soon

MenghaoGuo 357 Dec 11, 2022
Code for Overinterpretation paper Overinterpretation reveals image classification model pathologies

Overinterpretation This repository contains the code for the paper: Overinterpretation reveals image classification model pathologies Authors: Brandon

Gifford Lab, MIT CSAIL 17 Dec 10, 2022
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardón Rubio 5 Apr 20, 2022