"3D Human Texture Estimation from a Single Image with Transformers", ICCV 2021

Overview

Texformer: 3D Human Texture Estimation from a Single Image with Transformers

This is the official implementation of "3D Human Texture Estimation from a Single Image with Transformers", ICCV 2021 (Oral)

Highlights

  • Texformer: a novel structure combining Transformer and CNN
  • Low-Rank Attention layer (LoRA) with linear complexity
  • Combination of RGB UV map and texture flow
  • Part-style loss
  • Face-structure loss

BibTeX

@inproceedings{xu2021texformer,
  title={{3D} Human Texture Estimation from a Single Image with Transformers},
  author={Xu, Xiangyu and Loy, Chen Change},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year={2021}
}

Abstract

We propose a Transformer-based framework for 3D human texture estimation from a single image. The proposed Transformer is able to effectively exploit the global information of the input image, overcoming the limitations of existing methods that are solely based on convolutional neural networks. In addition, we also propose a mask-fusion strategy to combine the advantages of the RGB-based and texture-flow-based models. We further introduce a part-style loss to help reconstruct high-fidelity colors without introducing unpleasant artifacts. Extensive experiments demonstrate the effectiveness of the proposed method against state-of-the-art 3D human texture estimation approaches both quantitatively and qualitatively.

Overview

Overview of Texformer

The Query is a pre-computed color encoding of the UV space obtained by mapping the 3D coordinates of a standard human body mesh to the UV space. The Key is a concatenation of the input image and the 2D part-segmentation map. The Value is a concatenation of the input image and its 2D coordinates. We first feed the Query, Key, and Value into three CNNs to transform them into feature space. Then the multi-scale features are sent to the Transformer units to generate the Output features. The multi-scale Output features are processed and fused in another CNN, which produces the RGB UV map T, texture flow F, and fusion mask M. The final UV map is generated by combining T and the textures sampled with F using the fusion mask M. Note that we have skip connections between the same-resolution layers of the CNNs similar to [1] which have been omitted in the figure for brevity.

Visual Results

For each example, the image on the left is the input, and the image on the right is the rendered 3D human, where the human texture is predicted by the proposed Texformer, and the geometry is predicted by RSC-Net.

input1 input1       input1 input1

Install

  • Manage the environment with Anaconda
conda create -n texformer anaconda
conda activate texformer
  • Pytorch-1.4, CUDA-9.2
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=9.2 -c pytorch
  • Install Pytorch-neural-renderer according to the instructions here

Download

  • Download meta data, and put it in "./meta/".

  • Download pretrained model, and put it in "./pretrained".

  • We propose an enhanced Market-1501 dataset, termed as SMPLMarket, by equipping the original data of Market-1501 with SMPL estimation from RSC-Net and body part segmentation estimated by EANet. Please download the SMPLMarket dataset and put it in "./datasets/".

  • Other datasets: PRW, surreal, CUHK-SYSU. Please put these datasets in "./datasets/".

  • All the paths are set in "config.py".

Demo

Run the Texformer with human part segmentation from an off-the-shelf model:

python demo.py --img_path demo_imgs/img.png --seg_path demo_imgs/seg.png

If you don't want to run an external model for human part segmentation, you can use the human part segmentation of RSC-Net instead (note that this may affect the performance as the segmentation of RSC-Net is not very accurate due to the limitation of SMPL):

python demo.py --img_path demo_imgs/img.png

Train

Run the training code with default settings:

python trainer.py --exp_name texformer

Evaluation

Run the evaluation on the SPMLMarket dataset:

python eval.py --checkpoint_path ./pretrained/texformer_ep500.pt

References

[1] "3D Human Pose, Shape and Texture from Low-Resolution Images and Videos", IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

[2] "3D Human Shape and Pose from a Single Low-Resolution Image with Self-Supervised Learning", ECCV, 2020

[3] "SMPL: A Skinned Multi-Person Linear Model", SIGGRAPH Asia, 2015

[4] "Learning Spatial and Spatio-Temporal Pixel Aggregations for Image and Video Denoising", IEEE Transactions on Image Processing, 2020.

[5] "Learning Factorized Weight Matrix for Joint Filtering", ICML, 2020

Owner
XiangyuXu
XiangyuXu
A simple library that implements CLIP guided loss in PyTorch.

pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr

Sergei Belousov 74 Dec 26, 2022
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and

98 Jan 01, 2023
Matplotlib Image labeller for classifying images

mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more

Ian Hunt-Isaak 5 Sep 24, 2022
Code for the submitted paper Surrogate-based cross-correlation for particle image velocimetry

Surrogate-based cross-correlation (SBCC) This repository contains code for the submitted paper Surrogate-based cross-correlation for particle image ve

5 Jun 30, 2022
TC-GNN with Pytorch integration

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars

YUKE WANG 19 Dec 01, 2022
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
License Plate Detection Application

LicensePlate_Project 🚗 🚙 [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. 데이터 수집 및 라벨링 차량 번호판 이미지를 직접 수집하여 각 이미지에 대해 '번호판

4 Oct 10, 2022
Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Code for Neural Reflectance Surfaces (NeRS) [arXiv] [Project Page] [Colab Demo] [Bibtex] This repo contains the code for NeRS: Neural Reflectance Surf

Jason Y. Zhang 234 Dec 30, 2022
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

ccks2021-track3 CCKS2021中文NLP地址相关性任务-赛道三-冠军方案 团队:我的加菲鱼- wodejiafeiyu 初赛第二/复赛第一/决赛第一 前言 19年开始,陆陆续续参加了一些比赛,拿到过一些top,比较懒一直都没分享过,这次比较幸运又拿了top1,打算分享下 分类的任务

shaochenjie 131 Dec 31, 2022
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
Python parser for DTED data.

DTED Parser This is a package written in pure python (with help from numpy) to parse and investigate Digital Terrain Elevation Data (DTED) files. This

Ben Bonenfant 12 Dec 18, 2022
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023