Invertible conditional GANs for image editing

Related tags

Deep LearningIcGAN
Overview

Invertible Conditional GANs

A real image is encoded into a latent representation z and conditional information y, and then decoded into a new image. We fix z for every row, and modify y for each column to obtain variations in real samples.

This is the implementation of the IcGAN model proposed in our paper:

Invertible Conditional GANs for image editing. November 2016.

This paper is a summarized and updated version of my master thesis, which you can find here:

Master thesis: Invertible Conditional Generative Adversarial Networks. September 2016.

The baseline used is the Torch implementation of the DCGAN by Radford et al.

  1. Training the model
    1. Face dataset: CelebA
    2. Digit dataset: MNIST
  2. Visualize the results
    1. Reconstruct and modify real images
    2. Swap attributes
    3. Interpolate between faces

Requisites

Please refer to DCGAN torch repository to know the requirements and dependencies to run the code. Additionally, you will need to install the threads and optnet package:

luarocks install threads

luarocks install optnet

In order to interactively display the results, follow these steps.

1. Training the model

Model overview

The IcGAN is trained in four steps.

  1. Train the generator.
  2. Create a dataset of generated images with the generator.
  3. Train the encoder Z to map an image x to a latent representation z with the dataset generated images.
  4. Train the encoder Y to map an image x to a conditional information vector y with the dataset of real images.

All the parameters of the training phase are located in cfg/mainConfig.lua.

There is already a pre-trained model for CelebA available in case you want to skip the training part. Here you can find instructions on how to use it.

1.1 Train with a face dataset: CelebA

Note: for speed purposes, the whole dataset will be loaded into RAM during training time, which requires about 10 GB of RAM. Therefore, 12 GB of RAM is a minimum requirement. Also, the dataset will be stored as a tensor to load it faster, make sure that you have around 25 GB of free space.

Preprocess

mkdir celebA; cd celebA

Download img_align_celeba.zip here under the link "Align&Cropped Images". Also, you will need to download list_attr_celeba.txt from the same link, which is found under Anno folder.

unzip img_align_celeba.zip; cd ..
DATA_ROOT=celebA th data/preprocess_celebA.lua

Now move list_attr_celeba.txt to celebA folder.

mv list_attr_celeba.txt celebA

Training

  • Conditional GAN: parameters are already configured to run CelebA (dataset=celebA, dataRoot=celebA).

     th trainGAN.lua
  • Generate encoder dataset:

     net=[GENERATOR_PATH] outputFolder=celebA/genDataset/ samples=182638 th data/generateEncoderDataset.lua

    (GENERATOR_PATH example: checkpoints/celebA_25_net_G.t7)

  • Train encoder Z:

     datasetPath=celebA/genDataset/ type=Z th trainEncoder.lua
    
  • Train encoder Y:

     datasetPath=celebA/ type=Y th trainEncoder.lua
    

1.2 Train with a digit dataset: MNIST

Preprocess

Download MNIST as a luarocks package: luarocks install mnist

Training

  • Conditional GAN:

     name=mnist dataset=mnist dataRoot=mnist th trainGAN.lua
  • Generate encoder dataset:

     net=[GENERATOR_PATH] outputFolder=mnist/genDataset/ samples=60000 th data/generateEncoderDataset.lua

    (GENERATOR_PATH example: checkpoints/mnist_25_net_G.t7)

  • Train encoder Z:

     datasetPath=mnist/genDataset/ type=Z th trainEncoder.lua
    
  • Train encoder Y:

     datasetPath=mnist type=Y th trainEncoder.lua
    

2 Pre-trained CelebA model:

CelebA model is available for download here. The file includes the generator and both encoders (encoder Z and encoder Y).

3. Visualize the results

For visualizing the results you will need an already trained IcGAN (i.e. a generator and two encoders). The parameters for generating results are in cfg/generateConfig.lua.

3.1 Reconstruct and modify real images

Reconstrucion example

decNet=celeba_24_G.t7 encZnet=celeba_encZ_7.t7 encYnet=celeba_encY_5.t7 loadPath=[PATH_TO_REAL_IMAGES] th generation/reconstructWithVariations.lua

3.2 Swap attributes

Swap attributes

Swap the attribute information between two pairs of faces.

decNet=celeba_24_G.t7 encZnet=celeba_encZ_7.t7 encYnet=celeba_encY_5.t7 im1Path=[IM1] im2Path=[IM2] th generation/attributeTransfer.lua

3.3 Interpolate between faces

Interpolation

decNet=celeba_24_G.t7 encZnet=celeba_encZ_7.t7 encYnet=celeba_encY_5.t7 im1Path=[IM1] im2Path=[IM2] th generation/interpolate.lua

Do you like or use our work? Please cite us as

@inproceedings{Perarnau2016,
  author    = {Guim Perarnau and
               Joost van de Weijer and
               Bogdan Raducanu and
               Jose M. \'Alvarez},
  title     = {{Invertible Conditional GANs for image editing}},
  booktitle   = {NIPS Workshop on Adversarial Training},
  year      = {2016},
}
Owner
Guim
Guim
This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.

VAC_CSLR This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper] Prerequisites Th

Yuecong Min 64 Dec 19, 2022
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
Neural network chess engine trained on Gary Kasparov's games.

Neural Chess It's not the best chess engine, but it is a chess engine. Proof of concept neural network chess engine (feed-forward multi-layer perceptr

3 Jun 22, 2022
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
Emulation and Feedback Fuzzing of Firmware with Memory Sanitization

BaseSAFE This repository contains the BaseSAFE Rust APIs, introduced by "BaseSAFE: Baseband SAnitized Fuzzing through Emulation". The example/ directo

Security in Telecommunications 138 Dec 16, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022
Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646

[TCSVT] Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization LPN [Paper] NEWs Prerequisites Python 3.6 GPU Memory = 8G Numpy 1.

46 Dec 14, 2022
code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning Overview This code is for paper: Not All Unlabeled Data are Equa

Jason Ren 22 Nov 23, 2022
DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download

Bubbliiiing 31 Nov 25, 2022
A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION

CFN-SR A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION The audio-video based multimodal

skeleton 15 Sep 26, 2022
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022