PyBrain - Another Python Machine Learning Library.

Related tags

Deep Learningpybrain
Overview
PyBrain -- the Python Machine Learning Library
===============================================


INSTALLATION
------------
Quick answer: make sure you have SciPy installed, then
	python setup.py install
	
Longer answer: (if the above was any trouble) we keep more
detailed installation instructions (including those
for the dependencies) up-to-date in a wiki at:
	http://wiki.github.com/pybrain/pybrain/installation


DOCUMENTATION
-------------
Please read
	docs/documentation.pdf
or browse
	docs/html/*	
featuring: quickstart, tutorials, API, etc.

If you have matplotlib, the scripts in
	examples/*
may be instructive as well.

Comments
  • python3.5.2

    python3.5.2

    Does pybrain support python3.5.2? The simple 'import pybrain ' abort. like below. I install it just with 'pip install pybrain' D:\Anaconda3.5.2\python.exe F:/gitProjects/vnpy_future/pre_code/cnn/rnn.py Traceback (most recent call last): File "F:/gitProjects/vnpy_future/pre_code/cnn/rnn.py", line 7, in import pybrain File "D:\Anaconda3.5.2\lib\site-packages\pybrain_init_.py", line 1, in from structure.init import * ImportError: No module named 'structure'

    opened by hhuhhu 4
  • Port most of the code to Python3 compatible.

    Port most of the code to Python3 compatible.

    The code should still work on Python2.

    Import and print are the main changes.

    Not everything might be ported. The most part that was left intact are the range(). In Python2 it returns a list and in python it returns an iterator. This should speed up and in most cases should work without further changes.

    See http://www.diveinto.org/python3/porting-code-to-python-3-with-2to3.html#xrange

    opened by wernight 4
  • PyPi package update

    PyPi package update

    There seem to have been many changes since 2009 (over 4 years ago). The version number on GitHub is almost the same yet it's probably worth making another release.

    PyPi allows installing simply for a user or system and other things. Not that git clone isn't good in many cases.

    opened by wernight 3
  • IndexError after recurrent network copy

    IndexError after recurrent network copy

    Steps:

    >>> from pybrain.tools.shortcuts import buildNetwork
    >>> net = buildNetwork(2, 4, 1, recurrent=True)
    >>> net.activate((1, 1))
    ...
    array([ 0.02202066])
    >>> net.copy()
    >>> net.activate((1, 1))
    ...
    IndexError: index out of bounds
    

    This seem to be only when recurrent=True.

    opened by wernight 3
  • KeyError in sortModules

    KeyError in sortModules

    I have an issue with the sortModules method throwing a KeyError.

    Following the tutorial example, I created a script with the following:

    #! /usr/bin/env python
    # -*- coding: utf-8 -*-
    
    import sys
    import scipy
    import numpy as np
    
    print "\nPython version: %s" % sys.version
    print "Numpy version: %s" % np.version.version
    print "Scipy version: %s" % scipy.version.version
    
    from pybrain.structure import FeedForwardNetwork
    from pybrain.structure import LinearLayer, SigmoidLayer
    from pybrain.structure import FullConnection
    
    # Create network
    nn = FeedForwardNetwork()
    
    # Set network parameters
    INPUT_NDS = 2
    HIDDEN_NDS = 3
    OUTPUT_NDS = 1
    
    # Create Feed Forward Network layers
    inLayer = LinearLayer(INPUT_NDS)
    hiddenLayer = SigmoidLayer(HIDDEN_NDS)
    outLayer = LinearLayer(OUTPUT_NDS)
    
    # Fully connect all layers
    in_to_hidden = FullConnection(inLayer, hiddenLayer)
    hidden_to_out = FullConnection(hiddenLayer, outLayer)
    
    # Add the connected layers to the network 
    nn.addConnection(in_to_hidden)
    nn.addConnection(hidden_to_out)
    
    # Sort modules to prepare the NN for use
    nn.sortModules()
    

    Which gives me: Python version: 2.6.5 (r265:79063, Apr 16 2010, 13:57:41) [GCC 4.4.3] Numpy version: 1.3.0 Scipy version: 0.7.0 Traceback (most recent call last): File "/tmp/py7317Q6c", line 46, in nn.sortModules() File "/usr/local/lib/python2.6/dist-packages/PyBrain-0.3-py2.6.egg/pybrain/structure/networks/network.py", line 224, in sortModules self._topologicalSort() File "/usr/local/lib/python2.6/dist-packages/PyBrain-0.3-py2.6.egg/pybrain/structure/networks/network.py", line 188, in _topologicalSort graph[c.inmod].append(c.outmod) KeyError: <LinearLayer 'LinearLayer-3'>

    I have the latest version of pybrain installed, so this seems strange. Especially as I when use the shortcut:

    from pybrain.tools.shortcuts import buildNetwork
    
    opened by ghost 3
  • serialization using pickle freezes network causes strange caching behaviour

    serialization using pickle freezes network causes strange caching behaviour

    This is a duplicate of my Stackoverflow.com question.

    I fail to properly serialize/deserialize PyBrain networks using either pickle or cPickle.

    See the following example:

    from pybrain.datasets            import SupervisedDataSet
    from pybrain.tools.shortcuts     import buildNetwork
    from pybrain.supervised.trainers import BackpropTrainer
    import cPickle as pickle
    import numpy as np 
    
    #generate some data
    np.random.seed(93939393)
    data = SupervisedDataSet(2, 1)
    for x in xrange(10):
        y = x * 3
        z = x + y + 0.2 * np.random.randn()  
        data.addSample((x, y), (z,))
    
    #build a network and train it    
    
    net1 = buildNetwork( data.indim, 2, data.outdim )
    trainer1 = BackpropTrainer(net1, dataset=data, verbose=True)
    for i in xrange(4):
        trainer1.trainEpochs(1)
        print '\tvalue after %d epochs: %.2f'%(i, net1.activate((1, 4))[0])
    

    This is the output of the above code:

    Total error: 201.501998476
        value after 0 epochs: 2.79
    Total error: 152.487616382
        value after 1 epochs: 5.44
    Total error: 120.48092561
        value after 2 epochs: 7.56
    Total error: 97.9884043452
        value after 3 epochs: 8.41
    

    As you can see, network total error decreases as the training progresses. You can also see that the predicted value approaches the expected value of 12.

    Now we will do a similar exercise, but will include serialization/deserialization:

    print 'creating net2'
    net2 = buildNetwork(data.indim, 2, data.outdim)
    trainer2 = BackpropTrainer(net2, dataset=data, verbose=True)
    trainer2.trainEpochs(1)
    print '\tvalue after %d epochs: %.2f'%(1, net2.activate((1, 4))[0])
    
    #So far, so good. Let's test pickle
    pickle.dump(net2, open('testNetwork.dump', 'w'))
    net2 = pickle.load(open('testNetwork.dump'))
    trainer2 = BackpropTrainer(net2, dataset=data, verbose=True)
    print 'loaded net2 using pickle, continue training'
    for i in xrange(1, 4):
            trainer2.trainEpochs(1)
            print '\tvalue after %d epochs: %.2f'%(i, net2.activate((1, 4))[0])
    

    This is the output of this block:

    creating net2
    Total error: 176.339378639
        value after 1 epochs: 5.45
    loaded net2 using pickle, continue training
    Total error: 123.392181859
        value after 1 epochs: 5.45
    Total error: 94.2867637623
        value after 2 epochs: 5.45
    Total error: 78.076711114
        value after 3 epochs: 5.45
    

    As you can see, it seems that the training has some effect on the network (the reported total error value continues to decrease), however the output value of the network freezes on a value that was relevant for the first training iteration.

    Is there any caching mechanism that I need to be aware of that causes this erroneous behaviour? Are there better ways to serialize/deserialize pybrain networks?

    Relevant version numbers:

    • Python 2.6.5 (r265:79096, Mar 19 2010, 21:48:26) [MSC v.1500 32 bit (Intel)]
    • Numpy 1.5.1
    • cPickle 1.71
    • pybrain 0.3
    0.4 
    opened by bgbg 3
  • Hierarchy change: take Black-box optimization out of RL

    Hierarchy change: take Black-box optimization out of RL

    Although it technically fits there, it is a bit confusing. I think the split should be along the difference of ontogenetic/phylogenetic with on one side optimization, evolution, pso, etc. (coevolution methods should fit here, but how about multi-objective optimization?) and on the other side policy gradients, and other RL algos.

    0.3 Discussion In progress 
    opened by schaul 3
  • splitWithProportion returns same type instead of SupervisedDataSet

    splitWithProportion returns same type instead of SupervisedDataSet

    When we call splitWithProportion on a ClassificationDataSet object, return type is (SupervisedDataSet, SupervisedDataSet) instead of (ClassificationDataSet, ClassificationDataSet). While this modification fixes this issue, it can be improved by calling the constructor using kwargs. Didn't modify sub-classes in order to prevent repetition of lines 106-112. I've done this modification because when we split a sub-class of SupervisedDataSet, we should get a 2-tuple of sub-class object. Not a 2-tuple of SupervisedDataSet.

    opened by borakrc 2
  • ImportanceDataSet with BackpropTrainer results in IndexError

    ImportanceDataSet with BackpropTrainer results in IndexError

    I have a dataset which I am clustering using a gaussian mixture model, and then I want to train a neural network for each of the clusters. I want to use all the points in my dataset weighted based on the probability they are in the cluster for which the net is being trained.

    Originally, I was not weighting the training data and it worked fine:

    '''
    Create and train a neural net on the training data, given the actual labels
    '''
    def create_neural_net(training, labels, weights=None, T=10, silent=False):
        input_units = len(training[0])
        output_units = len(labels[0])
        n = len(training)
    
        net = FeedForwardNetwork()
        layer_in = SoftmaxLayer(input_units)
        layer_hidden = SigmoidLayer(1000)
        layer_hidden2 = SigmoidLayer(50)
        layer_out = LinearLayer(output_units)
    
        net.addInputModule(layer_in)
        net.addModule(layer_hidden)
        net.addModule(layer_hidden2)
        net.addOutputModule(layer_out)
    
        net.addConnection(FullConnection(layer_in, layer_hidden))
        net.addConnection(FullConnection(layer_hidden, layer_hidden2))
        net.addConnection(FullConnection(layer_hidden2, layer_out))
    
        net.sortModules()
    
        training_data = SupervisedDataSet(input_units, output_units)
        for i in xrange(n):
            # print len(training[i]) # prints 148
            # print len(labels[i]) # prints 13
            training_data.appendLinked(training[i], labels[i])
        trainer = BackpropTrainer(net, training_data)
    
        for i in xrange(T):
            if not silent: print "Training %d" % (i + 1)
            error = trainer.train()
            if not silent: print net.activate(training[0]), labels[0]
            if not silent: print "Training iteration %d.  Error: %f." % (i + 1, error)
        return net
    

    But now when I try to weight the data points:

    '''
    Create and train a neural net on the training data, given the actual labels
    '''
    def create_neural_net(training, labels, weights=None, T=10, silent=False):
        input_units = len(training[0])
        output_units = len(labels[0])
        n = len(training)
    
        net = FeedForwardNetwork()
        layer_in = SoftmaxLayer(input_units)
        layer_hidden = SigmoidLayer(1000)
        layer_hidden2 = SigmoidLayer(50)
        layer_out = LinearLayer(output_units)
    
        net.addInputModule(layer_in)
        net.addModule(layer_hidden)
        net.addModule(layer_hidden2)
        net.addOutputModule(layer_out)
    
        net.addConnection(FullConnection(layer_in, layer_hidden))
        net.addConnection(FullConnection(layer_hidden, layer_hidden2))
        net.addConnection(FullConnection(layer_hidden2, layer_out))
    
        net.sortModules()
    
        training_data = ImportanceDataSet(input_units, output_units)
        for i in xrange(n):
            # print len(training[i]) # prints 148
            # print len(labels[i]) # prints 13
            training_data.addSample(training[i], labels[i], importance=(weights[i] if weights is not None else None))
        trainer = BackpropTrainer(net, training_data)
    
        for i in xrange(T):
            if not silent: print "Training %d" % (i + 1)
            error = trainer.train()
            if not silent: print net.activate(training[0]), labels[0]
            if not silent: print "Training iteration %d.  Error: %f." % (i + 1, error)
        return net
    

    I get the following error:

    Traceback (most recent call last):
      File "clustering_experiment.py", line 281, in <module>
        total_model = get_model(training, training_labels, num_clusters=NUM_CLUSTERS
    , T=NUM_ITERS_NEURAL_NET)
      File "clustering_experiment.py", line 177, in get_model
        neural_nets.append(neural_net_plugin.create_neural_net(tra.tolist(), val.tol
    ist(), T=T, silent=True))
      File "/home/neural_net_plugin.py", line 43, in create_neural_net
        error = trainer.train()
      File "/usr/local/lib/python2.7/dist-packages/PyBrain-0.3.1-py2.7.egg/pybrain/s
    upervised/trainers/backprop.py", line 61, in train
        e, p = self._calcDerivs(seq)
      File "/usr/local/lib/python2.7/dist-packages/PyBrain-0.3.1-py2.7.egg/pybrain/s
    upervised/trainers/backprop.py", line 92, in _calcDerivs
        outerr = target - self.module.outputbuffer[offset]
    IndexError: index 162 is out of bounds for axis 0 with size 1
    
    opened by kkleidal 2
  • Fixes to Python3.x

    Fixes to Python3.x

    Changes

    All changes I've done were backported from Python3 to Python2 (at least until Python2.7).

    TODO

    • I didn't change the files containing weave library. In fact, I really don't know if this library is already supported in latest scipy versions. I couldn't find any recent references to that. Just found "old" news saying that it is not supported yet such as this and this. Maybe it's time to consider using Cython instead.
    • RL-Glue imports are also unchanged because its current Python codec have no support for Py3 yet. However, I changed Python codec source for RL-Glue to run in Py2 and Py3 (in fact, I just changed minor things such as print function and exception statements). By the way, if you guys want to try it, I've uploaded on my Github. Another thing to point out is that no one is maintaining RL-Glue code anymore.

    I didn't do any tests and I just tried to run the examples in the Pybrain docs and everything worked fine.

    opened by herodrigues 2
  • Add Randlov bicycle RL example.

    Add Randlov bicycle RL example.

    I have written part of the RL bicycle problem introduced by Randlov and Alstrom as an example in PyBrain. Hopefully you all would like to include it in PyBrain!

    Here's their paper: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.3038&rep=rep1&type=pdf

    I include some plotting, so you can view the learning.

    Please let me know what improvements I should make.

    opened by chrisdembia 2
  • cannot import name 'random' from 'scipy'

    cannot import name 'random' from 'scipy'

    I am using scipy 1.9.1 and I get the traceback below when using the buildNetwork function.

    Traceback (most recent call last): File "/home/nono/Desktop/tmp/neural/./main.py", line 3, in <module> from pybrain.tools.shortcuts import buildNetwork File "/usr/local/lib/python3.10/dist-packages/PyBrain-0.3.3-py3.10.egg/pybrain/__init__.py", line 1, in <module> from pybrain.structure.__init__ import * File "/usr/local/lib/python3.10/dist-packages/PyBrain-0.3.3-py3.10.egg/pybrain/structure/__init__.py", line 2, in <module> from pybrain.structure.modules.__init__ import * File "/usr/local/lib/python3.10/dist-packages/PyBrain-0.3.3-py3.10.egg/pybrain/structure/modules/__init__.py", line 3, in <module> from pybrain.structure.modules.gaussianlayer import GaussianLayer File "/usr/local/lib/python3.10/dist-packages/PyBrain-0.3.3-py3.10.egg/pybrain/structure/modules/gaussianlayer.py", line 3, in <module> from scipy import random ImportError: cannot import name 'random' from 'scipy' (/usr/local/lib/python3.10/dist-packages/scipy-1.9.1-py3.10-linux-x86_64.egg/scipy/__init__.py) Looks like an old reference where things have changed in scipy and not updated in pybrain probably.

    Is pybrain still maintained? The last release is from 2015.

    opened by noeldum 0
  • library with this error

    library with this error

    this error is being presented when I use this pybrain library

    this is my code: from pybrain.structure import FeedForwardNetwork from pybrain.structure import LinearLayer, SigmoidLayer, BiasUnit from pybrain.structure import FullConnection

    rneural = FeedForwardNetwork()

    CE = LinearLayer(4) CO = SigmoidLayer(6) CS = SigmoidLayer(1) b1 = BiasUnit() b2 = BiasUnit()

    rneural.addModule(CE) rneural.addModule(CO) rneural.addModule(CS) rneural.addModule(b1) rneural.addModule(b2)

    EO = FullConnection(CE, CO) OS = FullConnection(CO, CS) bO = FullConnection(b1, CO) bS = FullConnection(b2, CS)

    rneural.sortModule() print(rneural)

    when I run:

    python3 rneural.py Traceback (most recent call last): File "/home/warwick/Desktop/scriptsinpython/ai/rneural.py", line 1, in from pybrain.structure import FeedForwardNetwork File "/home/warwick/environments/my_env/lib/python3.10/site-packages/pybrain/init.py", line 1, in from pybrain.structure.init import * File "/home/warwick/environments/my_env/lib/python3.10/site-packages/pybrain/structure/init.py", line 2, in from pybrain.structure.modules.init import * File "/home/warwick/environments/my_env/lib/python3.10/site-packages/pybrain/structure/modules/init.py", line 2, in from pybrain.structure.modules.gate import GateLayer, DoubleGateLayer, MultiplicationLayer, SwitchLayer File "/home/warwick/environments/my_env/lib/python3.10/site-packages/pybrain/structure/modules/gate.py", line 10, in from pybrain.tools.functions import sigmoid, sigmoidPrime File "/home/warwick/environments/my_env/lib/python3.10/site-packages/pybrain/tools/functions.py", line 4, in from scipy.linalg import inv, det, svd, logm, expm2 ImportError: cannot import name 'expm2' from 'scipy.linalg' (/home/warwick/environments/my_env/lib/python3.10/site-packages/scipy/linalg/init.py)

    I've tried several solutions but the only one I haven't tried is to downgrade python3.10, I think it's not the most correct solution if anyone knows how to fix this

    thanks

    opened by Ickwarw 1
  • docs: Fix a few typos

    docs: Fix a few typos

    There are small typos in:

    • pybrain/rl/environments/flexcube/viewer.py
    • pybrain/rl/environments/ode/tasks/ccrl.py
    • pybrain/rl/environments/ode/tasks/johnnie.py
    • pybrain/rl/environments/shipsteer/viewer.py
    • pybrain/structure/modules/lstm.py
    • pybrain/tests/runtests.py
    • pybrain/tools/rlgluebridge.py

    Fixes:

    • Should read suggested rather than suggestet.
    • Should read specific rather than spezific.
    • Should read height rather than hight.
    • Should read whether rather than wether.
    • Should read method rather than methode.

    Semi-automated pull request generated by https://github.com/timgates42/meticulous/blob/master/docs/NOTE.md

    opened by timgates42 0
  • Pybrain: 'SupervisedDataSet' object has no attribute '_convertToOneOfMany' error

    Pybrain: 'SupervisedDataSet' object has no attribute '_convertToOneOfMany' error

    I'm working on speech recognition using raspberry pi while I was running the code of the build model using pybrain features I got the error:'SupervisedDataSet' object has no attribute '_convertToOneOfMany' ? If anyone has any pointers to get me back on the right path and that would be very much appreciated. ` def createRGBdataSet(inputSet, numOfSamples, numOfPoints): alldata = ClassificationDataSet(numOfPoints, 1, nb_classes=3) # Iter through all 3 groups and add the samples with appropriate class label for i in range(0, 3numOfSamples): input = inputSet[i] if (i < numOfSamples): alldata.addSample(input, [0]) elif (i >= numOfSamples and i < numOfSamples2): alldata.addSample(input, [1]) else: alldata.addSample(input, [2]) return alldata

    Split the dataset into 75% training and 25% test data.

    def splitData(alldata): tstdata, trndata = alldata.splitWithProportion( 0.25 ) trndata._convertToOneOfMany() tstdata._convertToOneOfMany() return trndata, tstdata `

    opened by ghost 0
  • I am having a problem with my code, please help!

    I am having a problem with my code, please help!

    I'm working on speech recognition using raspberry pi while I was running the code of the build model using pybrain features I got the error:'SupervisedDataSet' object has no attribute '_convertToOneOfMany' ? If anyone has any pointers to get me back on the right path and that would be very much appreciated.

    def createRGBdataSet(inputSet, numOfSamples, numOfPoints):
        alldata = ClassificationDataSet(numOfPoints, 1, nb_classes=3)
        # Iter through all 3 groups and add the samples with appropriate class label
        for i in range(0, 3*numOfSamples):
            input = inputSet[i]
            if (i < numOfSamples):
                alldata.addSample(input, [0])
            elif (i >= numOfSamples and i < numOfSamples*2):
                alldata.addSample(input, [1])
            else:
                alldata.addSample(input, [2])
        return alldata
    
    
    # Split the dataset into 75% training and 25% test data.
    def splitData(alldata):
        tstdata, trndata = alldata.splitWithProportion( 0.25 )
        trndata._convertToOneOfMany()
        tstdata._convertToOneOfMany()
        return trndata, tstdata
    
    opened by ghost 0
Releases(0.3.3)
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
Lucid Sonic Dreams syncs GAN-generated visuals to music.

Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from

731 Jan 02, 2023
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity

74 Dec 03, 2022
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

David Griffis 532 Jan 02, 2023
Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Drone Detection using Thermal Signature This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight ther

Chong Yu Quan 6 Dec 31, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
Official Repsoitory for "Mish: A Self Regularized Non-Monotonic Neural Activation Function" [BMVC 2020]

Mish: Self Regularized Non-Monotonic Activation Function BMVC 2020 (Official Paper) Notes: (Click to expand) A considerably faster version based on CU

Xa9aX ツ 1.2k Dec 29, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
ONNX Command-Line Toolbox

ONNX Command Line Toolbox Aims to improve your experience of investigating ONNX models. Use it like onnx infershape /path/to/model.onnx. (See the usag

黎明灰烬 (王振华 Zhenhua WANG) 23 Nov 13, 2022
Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch

Next Word Prediction Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch 🎬 Project Demo ✔ Application is hosted on Streamlit. You can see t

Vivek7 3 Aug 26, 2022
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 05, 2023
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,

Wenlong Huang 40 Nov 22, 2022