Pytorch Implementation for (STANet+ and STANet)

Related tags

Deep LearningSTANet
Overview

Pytorch Implementation for (STANet+ and STANet)

V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:V2

V1-From Semantic Categories to Fixations: A Novel Weakly-supervised Visual-auditory Saliency Detection Approach (CVPR2021), pdf:V1


Introduction

  • This repository contains the source code, results, and evaluation toolbox of STANet+ (V2), which are the journal extension version of our paper STANet (V1) published at CVPR-2021.
  • Compared our conference version STANet (V2), which has been extended in two distinct aspects.
    First on the basis of multisource and multiscale perspectives which have been adopted by the CVPR version (V1), we have provided a deep insight into the relationship between multigranularity perception (Fig.2) and real human attention behaved in visual-auditory environment.
    Second without using any complex networks, we have provided an elegant framework to complementary integrate multisource, multiscale, and multigranular information (Fig.1) to formulate pseudofixations which are very consistent with the real ones. Apart from achieving significant performance gain, this work also provides a comprehensive solution for mimicking multimodality attention.

Figure 1: STANet+ mainly focuses on devising a weakly supervised approach for the spatial-temporal-audio (STA) fixation prediction task, where the key innovation is that, as one of the first attempts, we automatically convert semantic category tags to pseudofixations via the newly proposed selective class activation mapping (SCAM) and the upgraded version SCAM+ that has been additionally equipped with the multigranularity perception ability. The obtained pseudofixations can be used as the learning objective to guide knowledge distillation to teach two individual fixation prediction networks (i.e., STA and STA+), which jointly enable generic video fixation prediction without requiring any video tags.

Figure 2: Some representative ’fixation shifting’ cases, additional multigranularity information (i.e., long/crossterm information) has been shown before collecting fixations in A_SRC. Clearly, by comparing A_FIX0, A_FIX1, and A _FIX2, we can easily notice that the multigranularity information could draw human attention to the most meaningful objects and make the fixations to be more focused.

Dependencies

  • Windows10
  • NVIDIA GeForce RTX 2070 SUPER & NVIDIA GeForce RTX 1080Ti
  • python 3.6.4
  • Matlab R2016b
  • pytorch 1.8.0
  • soundmodel

Preparation

Downloading the official pretrained visual and audio model

Visual:resnext101_32x8d, vgg16
Audio: vggsound, net = torch.load('vggsound_netvlad').

Downloading the training dataset and testing dataset:

Training dataset: AVE(Audio Visual Event Location).
Testing dataset: AVAD, DIEM, SumMe, ETMD, Coutrot.

Training

Note
We use Fourier-transform to transform audio features as audio stream input, therefore, you firstly need to use the function audiostft.py to convert the audio files (.wav) to get the audio features(.h5).

Step 1. SCAM training

Coarse: Separately training branches of Scoarse, SAcoarse, STcoarse ,it should be noted that the coarse stage is coarse location, so the size is set to 256 to ensure object-wise location accuracy.
Fine: Separately re-training branches of Sfine, SAfine, STfine,it should be noted that the fine stage is a fine location, so the size is set to 356 to ensure regional location exactness.

Step2. SCAM+ training

S+: Separately training branches of S+short, S+long, S+cross, because it is frame-wise relational reasoning network, the network is the same, so we only need to change the source of the input data.
SA+: Separately training branches of SA+long, SA+cross.
ST+: Separately training branches of ST+short, ST+long, ST+cross.

Step 3. pseudoGT generation

In order to facilitate the display of matrix data processing, Matlab2016b was performed in coarse location of inter-frame smoothing and pseudo GT data post-processing.

Step 4. STA and STA+ training

Training the model of STA and STA+ using the AVE video frames with the generated pseudoGT.

Testing

Step 1. Using the function audiostft.py to convert the audio files (.wav) to get the audio features (.h5).
Step 2. Testing STA, STA+ network, fusing the test results to generate final saliency results.(STANet+)

The model weight file STANet+, STANet, AudioSwitch:
(Baidu Netdisk, code:6afo).

Evaluation

We use the evaluation code in the paper of STAVIS for fair comparisons.
You may need to revise the algorithms, data_root, and maps_root defined in the main.m.
We provide the saliency maps of the SOTA:

(STANet+, STANet, ITTI, GBVS, SCLI, AWS-D, SBF, CAM, GradCAM, GradCAMpp, SGradCAMpp, xGradCAM, SSCAM, ScoCAM, LCAM, ISCAM, ACAM, EGradCAM, ECAM, SPG, VUNP, WSS, MWS, WSSA).
(Baidu Netdisk, code:6afo).

Quantitative comparisons:

Qualitative results of our method and eight representative saliency models: ITTI, GBVS, SCLI, SBF, AWS-D, WSS, MWS, WSSA. It can be observed that our method is able to handle various challenging scenes well and produces more accurate results than other competitors.

Qualitative comparisons:

Quantitative comparisons between our method with other fully-/weakly-/un-supervised methods on 6 datasets. Bold means the best result, " denotes the higher the score, the better the performance.

References

[1][Tsiami, A., Koutras, P., Maragos, P.STAViS: Spatio-Temporal AudioVisual Saliency Network. (CVPR 2020).] (https://openaccess.thecvf.com/content_CVPR_2020/papers/Tsiami_STAViS_Spatio-Temporal_AudioVisual_Saliency_Network_CVPR_2020_paper.pdf)
[2][Tian, Y., Shi, J., Li, B., Duan, Z., Xu, C. Audio-Visual Event Localization in Unconstrained Videos. (ECCV 2018)] (https://openaccess.thecvf.com/content_ECCV_2018/papers/Yapeng_Tian_Audio-Visual_Event_Localization_ECCV_2018_paper.pdf)
[3][Chen, H., Xie, W., Vedaldi, A., & Zisserman, A. Vggsound: A Large-Scale Audio-Visual Dataset. (ICASSP 2020)] (https://www.robots.ox.ac.uk/~vgg/publications/2020/Chen20/chen20.pdf)

Citation

If you find this work useful for your research, please consider citing the following paper:

@InProceedings{Wang_2021_CVPR,  
    author    = {Wang, Guotao and Chen, Chenglizhao and Fan, Deng-Ping and Hao, Aimin and Qin, Hong},
    title     = {From Semantic Categories to Fixations: A Novel Weakly-Supervised Visual-Auditory Saliency Detection Approach},  
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},  
    month     = {June},  
    year      = {2021},  
    pages     = {15119-15128}  
}  


@misc{wang2021weakly,
    title={Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception}, 
    author={Guotao Wang and Chenglizhao Chen and Dengping Fan and Aimin Hao and Hong Qin},
    year={2021},
    eprint={2112.13697},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Owner
GuotaoWang
GuotaoWang
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation

Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat

Hao Tang 131 Dec 07, 2022
Code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge.

Open Sesame This repository contains the code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge. Credits We built the project on t

9 Jul 24, 2022
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
Machine learning algorithms for many-body quantum systems

NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and

NetKet 413 Dec 31, 2022
Make differentially private training of transformers easy for everyone

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
[CVPR 2021 Oral] ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis

ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis [arxiv|pdf|v

Yinan He 78 Dec 22, 2022
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
Utilities to bridge Canvas-generated course rosters with GitLab's API.

gitlab-canvas-utils A collection of scripts originally written for CSE 13S. Oversees everything from GitLab course group creation, student repository

Eugene Chou 5 Jun 08, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
A Pythonic library for Nvidia Codec.

A Pythonic library for Nvidia Codec. The project is still in active development; expect breaking changes. Why another Python library for Nvidia Codec?

Zesen Qian 12 Dec 27, 2022
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

Yunyao 35 Oct 16, 2022
Code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition"

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Shilong Zhang 129 Dec 24, 2022