Extracts data from the database for a graph-node and stores it in parquet files

Overview

subgraph-extractor

Extracts data from the database for a graph-node and stores it in parquet files

Installation

For developing, it's recommended to use conda to create an environment.

Create one with python 3.9

conda create --name subgraph-extractor python=3.9

Now activate it

conda activate subgraph-extractor

Install the dev packages (note there is no space after the .)

pip install -e .[dev]

Use

Now you can use the main entrypoint, see help for more details

subgraph_extractor --help

Creating a config files

The easiest way to start is to use the interactive subgraph config generator.

Start by launching the subgraph config generator with the location you want to write the config file to.

subgraph_config_generator --config-location subgraph_config.yaml

It will default to using a local graph-node with default username & password (postgresql://graph-node:[email protected]:5432/graph-node) If you are connecting to something else you need to specify the database connection string with --database-string.

You will then be asked to select:

  • The relevant subgraph
  • From the subgraph, which tables to extract (multi-select)
  • For each table, which column to partition on (this is typically the block number or timestamp)
  • Any numeric columns that require mapping to another type * see note below

Numeric column mappings

Uint256 is a common data type in contracts but rare in most data processing tools. The graph node creates a Postgres Numeric column for any field marked as a BigInt as it is capable of accurately storing uint256s (a common data type in solidity).

However, many downstream tools cannot handle these as numbers.

By default, these columns will be exported as bytes - a lossless representation but one that is not as usable for sums, averages, etc. This is fine for some data, such as addresses or where the field is used to pack data (e.g. the tokenIds for decentraland).

For other use cases, the data must be converted to another type. In the config file, you can specify numeric columns that need to be mapped to another type:

column_mappings:
  my_original_column_name:
    my_new_column_name:
      type: uint64

However, if the conversion does not work (e.g. the number is too large), the extraction will stop with an error. This is fine for cases where you know the range (e.g. timestamp or block number). For other cases you can specify a maximum value, default and a column to store whether the row was at most the maximum value:

column_mappings:
  my_original_column_name:
    my_new_column_name:
      type: uint64
      max_value: 18446744073709551615
      default: 0
      validity_column: new_new_column_name_valid

If the number is over 18446744073709551615, there will be a 0 stored in the column my_new_column_name and FALSE stored in new_new_column_name_valid.

If your numbers are too large but can be safely lowered for your usecase (e.g. converting from wei to gwei) you can provide a downscale value:

column_mappings:
  transfer_fee_wei:
    transfer_fee_gwei:
      downscale: 1000000000
      type: uint64
      max_value: 18446744073709551615
      default: 0
      validity_column: transfer_fee_gwei_valid

This will perform an integer division (divide and floor) the original value. WARNING this is a lossy conversion.

You may have as many mappings for a single column as you want, and the original will always be present as bytes.

The following numeric types are allowed:

  • int8, int16, int32, int64
  • uint8, uint16, uint32, uint64
  • float32, float64
  • Numeric38 (this is a numeric/Decimal column with 38 digits of precision)

Contributing

Please format everything with black and isort

black . && isort --profile=black .
Owner
Cardstack
Experience Web 3.0.
Cardstack
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
TensorFlow-based implementation of "Pyramid Scene Parsing Network".

PSPNet_tensorflow Important Code is fine for inference. However, the training code is just for reference and might be only used for fine-tuning. If yo

HsuanKung Yang 323 Dec 20, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
IsoGCN code for ICLR2021

IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N

horiem 39 Nov 25, 2022
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
Test-Time Personalization with a Transformer for Human Pose Estimation, NeurIPS 2021

Transforming Self-Supervision in Test Time for Personalizing Human Pose Estimation This is an official implementation of the NeurIPS 2021 paper: Trans

41 Nov 28, 2022
An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge.

Bottom-Up and Top-Down Attention for Visual Question Answering An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge. The

Hengyuan Hu 731 Jan 03, 2023
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)

Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR

Yassine 344 Dec 29, 2022
Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

PPML: Machine Learning on Data you cannot see Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022 Abst

Valerio Maggio 10 Aug 16, 2022
Repository for tackling Kaggle Ultrasound Nerve Segmentation challenge using Torchnet.

Ultrasound Nerve Segmentation Challenge using Torchnet This repository acts as a starting point for someone who wants to start with the kaggle ultraso

Qure.ai 46 Jul 18, 2022
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022
Baseline and template code for node21 detection track

Nodule Detection Algorithm This codebase implements a baseline model, Faster R-CNN, for the nodule detection track in NODE21. It contains all necessar

node21challenge 11 Jan 15, 2022
Edge Restoration Quality Assessment

ERQA - Edge Restoration Quality Assessment ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR

MSU Video Group 27 Dec 17, 2022
Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking Part-Aware Measurement for Robust Multi-View Multi-Human 3D P

19 Oct 27, 2022
AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition.

AnimalAI 3 AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition. It aims to support AI research t

Matthew Crosby 58 Dec 12, 2022