Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Related tags

Deep LearningCLARE
Overview

Contextualized Perturbation for Textual Adversarial Attack

Introduction

This is a PyTorch implementation of Contextualized Perturbation for Textual Adversarial Attack by Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris Brockett, Ming-Ting Sun and Bill Dolan, NAACL 2021.

A third-party implementation of CLARE is available in the TextAttack.

Environment

The code is based on python 3.6, tensorflow 1.14 and Pytorch 1.4.0 version. The code is developed and tested using one NVIDIA GTX 1080Ti.

Please use Conda to setup your environment, and then run

conda install -y pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch

bash install_requirement.sh

Data Preparation and Pretrained Classifier

You can download pretrained target classifier and full training data in here (Coming soon). Alternatively, you can prepare you own training set in the same format as the example under /data/training_data/${dataset}/dataset/. The format will look like:

label text1 text2
2 At the end of 5 years ... The healthcare agency will be able ...

For single sentence classification, there is an empty field in text2.

After this, please run:

python train_BERT_classifier.py --dataset ${dataset} --save_model.

It will save pretrained classifer under the director: /saved_model/${dataset}_uncased/. The default target classifer is bert, you can train other types by setting extra argument: --target_model textcnn. Please check out the arguments in config.py for more details.

The text samples to be attacked are store in /data/${dataset}.tsv with the same format.

Textual Adversarial Attack

Simply run:

python bert_attack_classification.py --dataset ${dataset} --sample_file ${dataset}

and it will save the results under /adv_results/.

To attack qnli dataset, please add an argument --attack_second as we attack the longer sentence in two-sentence classification.

You can also modify the attacking hyper-parameters in hyper_parameters.py to adjust the trade-off between different aspects. Other details can be refered in config.py.

To run the attack from the baseline textfooler:

python attack_classification.py --dataset ${dataset} --sample_file ${dataset}

Citing

if you find our work is useful in your research, please consider citing:

@InProceedings{li2021contextualized,
  title={Contextualized perturbation for textual adversarial attack},
  author={Li, Dianqi and Zhang, Yizhe and Peng, Hao and Chen, Liqun and Brockett, Chris and Sun, Ming-Ting and Dolan, Bill},
  booktitle={Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics},
  year={2021}
}
Owner
cookielee77
Ph.D. candidate at University of Washington
cookielee77
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022
Videocaptioning.pytorch - A simple implementation of video captioning

pytorch implementation of video captioning recommend installing pytorch and pyth

Yiyu Wang 2 Jan 01, 2022
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
Facestar dataset. High quality audio-visual recordings of human conversational speech.

Facestar Dataset Description Existing audio-visual datasets for human speech are either captured in a clean, controlled environment but contain only a

Meta Research 87 Dec 21, 2022
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

143 Dec 28, 2022
UniLM AI - Large-scale Self-supervised Pre-training across Tasks, Languages, and Modalities

Pre-trained (foundation) models across tasks (understanding, generation and translation), languages (100+ languages), and modalities (language, image, audio, vision + language, audio + language, etc.

Microsoft 7.6k Jan 01, 2023
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021] PARE: Part Attention Regressor for 3D Human Body Estimation, Muhammed Kocabas,

Muhammed Kocabas 277 Jan 03, 2023
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022
[ICLR 2022 Oral] F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

F8Net Fixed-Point 8-bit Only Multiplication for Network Quantization (ICLR 2022 Oral) OpenReview | arXiv | PDF | Model Zoo | BibTex PyTorch implementa

Snap Research 76 Dec 13, 2022
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Ananta Raj Pant 2 Aug 08, 2022
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022