Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Related tags

Deep LearningCLARE
Overview

Contextualized Perturbation for Textual Adversarial Attack

Introduction

This is a PyTorch implementation of Contextualized Perturbation for Textual Adversarial Attack by Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris Brockett, Ming-Ting Sun and Bill Dolan, NAACL 2021.

A third-party implementation of CLARE is available in the TextAttack.

Environment

The code is based on python 3.6, tensorflow 1.14 and Pytorch 1.4.0 version. The code is developed and tested using one NVIDIA GTX 1080Ti.

Please use Conda to setup your environment, and then run

conda install -y pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch

bash install_requirement.sh

Data Preparation and Pretrained Classifier

You can download pretrained target classifier and full training data in here (Coming soon). Alternatively, you can prepare you own training set in the same format as the example under /data/training_data/${dataset}/dataset/. The format will look like:

label text1 text2
2 At the end of 5 years ... The healthcare agency will be able ...

For single sentence classification, there is an empty field in text2.

After this, please run:

python train_BERT_classifier.py --dataset ${dataset} --save_model.

It will save pretrained classifer under the director: /saved_model/${dataset}_uncased/. The default target classifer is bert, you can train other types by setting extra argument: --target_model textcnn. Please check out the arguments in config.py for more details.

The text samples to be attacked are store in /data/${dataset}.tsv with the same format.

Textual Adversarial Attack

Simply run:

python bert_attack_classification.py --dataset ${dataset} --sample_file ${dataset}

and it will save the results under /adv_results/.

To attack qnli dataset, please add an argument --attack_second as we attack the longer sentence in two-sentence classification.

You can also modify the attacking hyper-parameters in hyper_parameters.py to adjust the trade-off between different aspects. Other details can be refered in config.py.

To run the attack from the baseline textfooler:

python attack_classification.py --dataset ${dataset} --sample_file ${dataset}

Citing

if you find our work is useful in your research, please consider citing:

@InProceedings{li2021contextualized,
  title={Contextualized perturbation for textual adversarial attack},
  author={Li, Dianqi and Zhang, Yizhe and Peng, Hao and Chen, Liqun and Brockett, Chris and Sun, Ming-Ting and Dolan, Bill},
  booktitle={Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics},
  year={2021}
}
Owner
cookielee77
Ph.D. candidate at University of Washington
cookielee77
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Requirements Pytorch=1.6.0, 1.9.0 (=1.

Rayicer 93 Dec 19, 2022
UniLM AI - Large-scale Self-supervised Pre-training across Tasks, Languages, and Modalities

Pre-trained (foundation) models across tasks (understanding, generation and translation), languages (100+ languages), and modalities (language, image, audio, vision + language, audio + language, etc.

Microsoft 7.6k Jan 01, 2023
Analysis of Antarctica sequencing samples contaminated with SARS-CoV-2

Analysis of SARS-CoV-2 reads in sequencing of 2018-2019 Antarctica samples in PRJNA692319 The samples analyzed here are described in this preprint, wh

Jesse Bloom 4 Feb 09, 2022
Fedlearn支持前沿算法研发的Python工具库 | Fedlearn algorithm toolkit for researchers

FedLearn-algo Installation Development Environment Checklist python3 (3.6 or 3.7) is required. To configure and check the development environment is c

89 Nov 14, 2022
A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Kangneng Zhou 13 Sep 27, 2022
Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)

Speech Emotion Analyzer The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have

Mitesh Puthran 965 Dec 24, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training".

Mixup-Data-Dependency Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training". Running Alternating Line Exp

Muthu Chidambaram 0 Nov 11, 2021
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin

3 May 18, 2022
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023