Evaluating Privacy-Preserving Machine Learning in Critical Infrastructures: A Case Study on Time-Series Classification

Related tags

Deep LearningPPML-TSA
Overview

PPML-TSA

This repository provides all code necessary to reproduce the results reported in our paper Evaluating Privacy-Preserving Machine Learning in Critical Infrastructures: A Case Study on Time-Series Classification[IEEE][arXiv].

Abstract: With the advent of machine learning in applications of critical infrastructure such as healthcare and energy, privacy is a growing concern in the minds of stakeholders.It is pivotal to ensure that neither the model nor the data can be used to extract sensitive information used by attackers against individuals or to harm whole societies through the exploitation of critical infrastructure. The applicability of machine learning in these domains is mostly limited due to a lack of trust regarding the transparency and the privacy constraints. Various safety-critical use cases (mostly relying on time-series data) are currently underrepresented in privacy-related considerations.By evaluating several privacy-preserving methods regarding their applicability on time-series data, we validated the inefficacy of encryption for deep learning, the strong dataset dependence of differential privacy, and the broad applicability of federated methods.

Requirements

An appropriate Python environment can be set up using the src/requirements.txt files provided in the repo. The respective datasets can be downloaded from the UEA & UCR Time Series Classification Repository and should be placed in the /data/ folder.

Basic Usage

Results can be reproduced by running the corresponding bash scripts located in the subfolders of /src/bash_scripts/ as outlined in the table below. Models are savd in /models/ and resulting evaluation files are placed under /results/.

Experiment Scripts
Experiment 0 - Train the baselines execute_baseline.sh
execute_baseline_architecture.sh
Experiment 1 - Performance Benchmarking DM/execute_differential_privacy.sh
DM/execute_federated_learning.sh
AL/execute_federated_ensemble.sh
Experiment 2 - Architecture comparison DM/execute_differential_privacy_architecture.sh
DM/execute_federated_learning_architecture.sh
AL/execute_federated_ensemble_architecture.sh
Experiment 3 - Differential Privacy: Hyperparameter Evaluation DM/execute_differential_privacy_detailed.sh
Experiment 4 - Federated Ensemble: Ensemble Size Evaluation AL/execute_federated_ensemble_detailed.sh
Experiment 5 - Differential Privacy in a Federated Setting AL/execute_DPFE.sh
Experiment 6 - Secret Sharing Runtime Evaluation DM/execute_crypten_timing.sh

Citation

Please consider citing our associated paper:

    @article{mercier2021evaluating,
        title={Evaluating Privacy-Preserving Machine Learning in Critical Infrastructures: A Case Study on Time-Series Classification},
        author={Mercier, Dominique and Lucieri, Adriano and Munir, Mohsin and Dengel, Andreas and Ahmed, Sheraz},
        journal={IEEE Transactions on Industrial Informatics},
        year={2021}
    }
Owner
Dominik
Dominik
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
Pytorch for Segmentation

Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to

ycszen 411 Nov 22, 2022
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University 📖 Table of

Hosein Damavandi 6 Aug 22, 2022
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Yam Peleg 63 Sep 21, 2022
DiAne is a smart fuzzer for IoT devices

Diane Diane is a fuzzer for IoT devices. Diane works by identifying fuzzing triggers in the IoT companion apps to produce valid yet under-constrained

seclab 28 Jan 04, 2023
A multi-mode modulator for multi-domain few-shot classification (ICCV)

A multi-mode modulator for multi-domain few-shot classification (ICCV)

Yanbin Liu 8 Apr 28, 2022
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
Augmented Traffic Control: A tool to simulate network conditions

Augmented Traffic Control Full documentation for the project is available at http://facebook.github.io/augmented-traffic-control/. Overview Augmented

Meta Archive 4.3k Jan 08, 2023
Single cell current best practices tutorial case study for the paper:Luecken and Theis, "Current best practices in single-cell RNA-seq analysis: a tutorial"

Scripts for "Current best-practices in single-cell RNA-seq: a tutorial" This repository is complementary to the publication: M.D. Luecken, F.J. Theis,

Theis Lab 968 Dec 28, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

25.7k Jan 09, 2023
Automatic tool focused on deriving metallicities of open clusters

metalcode Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs

2 Dec 13, 2021
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
Western-3DSlicer-Modules - Point-Set Registrations for Ultrasound Probe Calibrations

Point-Set Registrations for Ultrasound Probe Calibrations -Undergraduate Thesis-

Matteo Tanzi 0 May 04, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022