Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

Overview

PyVarInf

PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference.

Bayesian Deep Learning with Variational Inference

Bayesian Deep Learning

Assume we have a dataset D = {(x1, y1), ..., (xn, yn)} where the x's are the inputs and the y's the outputs. The problem is to predict the y's from the x's. Further assume that p(D|θ) is the output of a neural network with weights θ. The network loss is defined as

Usually, when training a neural network, we try to find the parameter θ* which minimizes Ln(θ).

In Bayesian Inference, the problem is instead to study the posterior distribution of the weights given the data. Assume we have a prior α over ℝd. The posterior is

This can be used for model selection, or prediction with Bayesian Model Averaging.

Variational Inference

It is usually impossible to analytically compute the posterior distribution, especially with models as complex as neural networks. Variational Inference adress this problem by approximating the posterior p(θ|D) by a parametric distribution q(θ|φ) where φ is a parameter. The problem is then not to learn a parameter θ* but a probability distribution q(θ|φ) minimizing

F is called the variational free energy.

This idea was originally introduced for deep learning by Hinton and Van Camp [5] as a way to use neural networks for Minimum Description Length [3]. MDL aims at minimizing the number of bits used to encode the whole dataset. Variational inference introduces one of many data encoding schemes. Indeed, F can be interpreted as the total description length of the dataset D, when we first encode the model, then encode the part of the data not explained by the model:

  • LC(φ) = KL(q(.|φ)||α) is the complexity loss. It measures (in nats) the quantity of information contained in the model. It is indeed possible to encode the model in LC(φ) nats, with the bits-back code [4].
  • LE(φ) = Eθ ~ q(θ|φ)[Ln(θ)] is the error loss. It measures the necessary quantity of information for encoding the data D with the model. This code length can be achieved with a Shannon-Huffman code for instance.

Therefore F(φ) = LC(φ) + LE(φ) can be rephrased as an MDL loss function which measures the total encoding length of the data.

Practical Variational Optimisation

In practice, we define φ = (µ, σ) in ℝd x ℝd, and q(.|φ) = N(µ, Σ) the multivariate distribution where Σ = diag(σ12, ..., σd2), and we want to find the optimal µ* and σ*.

With this choice of a gaussian posterior, a Monte Carlo estimate of the gradient of F w.r.t. µ and σ can be obtained with backpropagation. This allows to use any gradient descent method used for non-variational optimisation [2]

Overview of PyVarInf

The core feature of PyVarInf is the Variationalize function. Variationalize takes a model as input and outputs a variationalized version of the model with gaussian posterior.

Definition of a variational model

To define a variational model, first define a traditional PyTorch model, then use the Variationalize function :

import pyvarinf
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
        self.bn1 = nn.BatchNorm2d(10)
        self.bn2 = nn.BatchNorm2d(20)

    def forward(self, x):
        x = self.bn1(F.relu(F.max_pool2d(self.conv1(x), 2)))
        x = self.bn2(F.relu(F.max_pool2d(self.conv2(x), 2)))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x)

model = Net()
var_model = pyvarinf.Variationalize(model)
var_model.cuda()

Optimisation of a variational model

Then, the var_model can be trained that way :

optimizer = optim.Adam(var_model.parameters(), lr=0.01)

def train(epoch):
    var_model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.cuda(), target.cuda()
        data, target = Variable(data), Variable(target)
        optimizer.zero_grad()
        output = var_model(data)
        loss_error = F.nll_loss(output, target)
	# The model is only sent once, thus the division by
	# the number of datapoints used to train
        loss_prior = var_model.prior_loss() / 60000
        loss = loss_error + loss_prior
        loss.backward()
        optimizer.step()

for epoch in range(1, 500):
    train(epoch)

Available priors

In PyVarInf, we have implemented four families of priors :

Gaussian prior

The gaussian prior is N(0,Σ), with Σ the diagonal matrix diag(σ12, ..., σd2) defined such that 1/σi is the square root of the number of parameters in the layer, following the standard initialisation of neural network weights. It is the default prior, and do not have any parameter. It can be set with :

var_model.set_prior('gaussian')

Conjugate priors

The conjugate prior is used if we assume that all the weights in a given layer should be distributed as a gaussian, but with unknown mean and variance. See [6] for more details. This prior can be set with

var_model.set_prior('conjugate', n_mc_samples, alpha_0, beta_0, mu_0, kappa_0)

There are five parameters that have to bet set :

  • n_mc_samples, the number of samples used in the Monte Carlo estimation of the prior loss and its gradient.
  • mu_0, the prior sample mean
  • kappa_0, the number of samples used to estimate the prior sample mean
  • alpha_0 and beta_0, such that variance was estimated from 2 alpha_0 observations with sample mean mu_0 and sum of squared deviations 2 beta_0

Conjugate prior with known mean

The conjugate prior with known mean is similar to the conjugate prior. It is used if we assume that all the weights in a given layer should be distributed as a gaussian with a known mean but unknown variance. It is usefull in neural networks model when we assume that the weights in a layer should have mean 0. See [6] for more details. This prior can be set with :

var_model.set_prior('conjugate_known_mean', n_mc_samples, mean, alpha_0, beta_0)

Four parameters have to be set:

  • n_mc_samples, the number of samples used in the Monte Carlo estimation of the prior loss and its gradient.
  • mean, the known mean
  • alpha_0 and beta_0 defined as above

Mixture of two gaussian

The idea of using a mixture of two gaussians is defined in [1]. This prior can be set with:

var_model.set_prior('mixtgauss', n_mc_samples, sigma_1, sigma_2, pi)
  • n_mc_samples, the number of samples used in the Monte Carlo estimation of the prior loss and its gradient.
  • sigma_1 and sigma_2 the std of the two gaussians
  • pi the probability of the first gaussian

Requirements

This module requires Python 3. You need to have PyTorch installed for PyVarInf to work (as PyTorch is not readily available on PyPi). To install PyTorch, follow the instructions described here.

References

  • [1] Blundell, Charles, Cornebise, Julien, Kavukcuoglu, Koray, and Wierstra, Daan. Weight Uncertainty in Neural Networks. In International Conference on Machine Learning, pp. 1613–1622, 2015.
  • [2] Graves, Alex. Practical Variational Inference for Neural Networks. In Neural Information Processing Systems, 2011.
  • [3] Grünwald, Peter D. The Minimum Description Length principle. MIT press, 2007.
  • [4] Honkela, Antti and Valpola, Harri. Variational Learning and Bits-Back Coding: An Information-Theoretic View to Bayesian Learning. IEEE transactions on Neural Networks, 15(4), 2004.
  • [5] Hinton, Geoffrey E and Van Camp, Drew. Keeping Neural Networks Simple by Minimizing the Description Length of the Weights. In Proceedings of the sixth annual conference on Computational learning theory. ACM, 1993.
  • [6] Murphy, Kevin P. Conjugate Bayesian analysis of the Gaussian distribution., 2007.
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
Solution to the Weather4cast 2021 challenge

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predi

Jussi Leinonen 13 Jan 03, 2023
PyTorch implementation of adversarial patch

adversarial-patch PyTorch implementation of adversarial patch This is an implementation of the Adversarial Patch paper. Not official and likely to hav

Jamie Hayes 172 Nov 29, 2022
Pretraining Representations For Data-Efficient Reinforcement Learning

Pretraining Representations For Data-Efficient Reinforcement Learning Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Ch

Mila 40 Dec 11, 2022
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 05, 2023
A Lightweight Experiment & Resource Monitoring Tool 📺

Lightweight Experiment & Resource Monitoring 📺 "Did I already run this experiment before? How many resources are currently available on my cluster?"

170 Dec 28, 2022
COLMAP - Structure-from-Motion and Multi-View Stereo

COLMAP About COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface.

4.7k Jan 07, 2023
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
SOTR: Segmenting Objects with Transformers [ICCV 2021]

SOTR: Segmenting Objects with Transformers [ICCV 2021] By Ruohao Guo, Dantong Niu, Liao Qu, Zhenbo Li Introduction This is the official implementation

186 Dec 20, 2022
Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets This is the official implementation of "Towards Good Pract

Sanja Fidler's Lab 52 Nov 22, 2022
😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Hugging Face 865 Dec 24, 2022
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme

Tanvirul Alam 142 Jan 01, 2023
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning This repository is the official implementation of CARE.

ChongjianGE 89 Dec 02, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Membership Inference Attack against Graph Neural Networks

MIA GNN Project Starter If you meet the version mismatch error for Lasagne library, please use following command to upgrade Lasagne library. pip insta

6 Nov 09, 2022