[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"

Overview

ASSL

This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR), introduced in our NeurIPS 2021 Spotlight paper:

Aligned Structured Sparsity Learning for Efficient Image Super-Resolution [Camera Ready]
Yulun Zhang*, Huan Wang*, Can Qin, and Yun Fu (*Contribute Equally)
Northeastern University, Boston, MA, USA

Stay tuned!

You might also like...
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

PyTorch code for our paper
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

PyTorch code for our ECCV 2018 paper
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Official implementation of our paper
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

Comments
  • Could you share the code with me?

    Could you share the code with me?

    @MingSun-Tse Thanks for your excellent work. I read the paper ,and I want to learn the details. Could you share the paper with me? Thank you very much!!

    opened by ciwei123 3
  • Why simply use the first constrained layer as pruning template for all constrained layers?

    Why simply use the first constrained layer as pruning template for all constrained layers?

    From the observation of training results, the hard mask's weights between the constrained layers are not exactly aligned. https://github.com/MingSun-Tse/ASSL/blob/a564556c8b578c2ee86d135044f088bfeaafc707/src/pruner/utils.py#L71

    opened by yumath 2
  • Questions about implementation detail

    Questions about implementation detail

    hello , I have some questiones about implementation details.

    Data are obtained using the HR-LR data pairs obtained by the down-sampling code provided in BasicSR. The training data was DF2K (900 DIV2K + 2650 Flickr2K), and the test data was Set5.

    I run this command to prune the EDSR_16_256 model to EDSR_16_48. Only the pruning ratio and storage path name are modified compared to the command provided by the official.

    Prune from 256 to 48, pr=0.8125, x2, ASSL

    python main.py --model LEDSR --scale 2 --patch_size 96 --ext sep --dir_data /home/notebook/data/group_cpfs/wurongyuan/data/data
    --data_train DF2K --data_test DF2K --data_range 1-3550/3551-3555 --chop --save_results --n_resblocks 16 --n_feats 256
    --method ASSL --wn --stage_pr [0-1000:0.8125] --skip_layers *mean*,*tail*
    --same_pruned_wg_layers model.head.0,model.body.16,*body.2 --reg_upper_limit 0.5 --reg_granularity_prune 0.0001
    --update_reg_interval 20 --stabilize_reg_interval 43150 --pre_train pretrained_models/LEDSR_F256R16BIX2_DF2K_M311.pt
    --same_pruned_wg_criterion reg --save main/SR/LEDSR_F256R16BIX2_DF2K_ASSL_0.8125_RGP0.0001_RUL0.5_Pretrain_06011101 Results model_just_finished_prune ---> 33.739dB fine-tuning after one epoch ---> 37.781dB fine-tuning after 756 epoch ---> 37.940dB

    The result (37.940dB) I obtained with the code provided by the official is still a certain gap from the result in the paper (38.12dB). I should have overlooked some details.

    I also compared L1-norm method provided in the code. Prune from 256 to 48, pr=0.8125, x2, L1

    python main.py --model LEDSR --scale 2 --patch_size 96 --ext sep --dir_data /home/notebook/data/group_cpfs/wurongyuan/data/data
    --data_train DF2K --data_test DF2K --data_range 1-3550/3551-3555 --chop --save_results --n_resblocks 16 --n_feats 256
    --method L1 --wn --stage_pr [0-1000:0.8125] --skip_layers *mean*,*tail*
    --same_pruned_wg_layers model.head.0,model.body.16,*body.2 --reg_upper_limit 0.5 --reg_granularity_prune 0.0001
    --update_reg_interval 20 --stabilize_reg_interval 43150 --pre_train pretrained_models/LEDSR_F256R16BIX2_DF2K_M311.pt
    --same_pruned_wg_criterion reg --save main/SR/LEDSR_F256R16BIX2_DF2K_L1_0.8125_06011101

    Results

    model_just_finished_prune ---> 13.427dB fine-tuning after one epoch ---> 33.202dB fine-tuning after 756 epoch ---> 37.933dB

    The difference between the results of L1-norm method and those of ASSL seems negligible at this pruning ratio (256->48)

    Is there something I missed? Looking forward to your reply! >-<

    opened by wurongyuan 2
  • Questions on Data Preparation

    Questions on Data Preparation

    Hello and thanks for your amazing work! When I try to reproduce the paper results, I met some trouble binarizing the DF2K data:

    data/DF2K/bin/DF2K_train_LR_bicubic/X4/3548x4.pt does not exist. Now making binary...
    Direct pt file without name or image
    data/DF2K/bin/DF2K_train_LR_bicubic/X4/3549x4.pt does not exist. Now making binary...
    Direct pt file without name or image
    data/DF2K/bin/DF2K_train_LR_bicubic/X4/3550x4.pt does not exist. Now making binary...
    Direct pt file without name or image
    data/DF2K/bin/DF2K_train_HR/3551.pt does not exist. Now making binary...
    Traceback (most recent call last):
    ...
    FileNotFoundError: No such file: '/home/nfs_data/shixiangsheng/projects/ModelCompression/Prune/ASSL/src/data/DF2K/DF2K_train_HR/3551.png'
    

    I created dirs like this: ----data |__DF2K |__DF2K_train_HR |__DF2K_train_LR_bicubic

    I put '0001.png' - '0900.png' from ./data/DIV2K/DIV2K_train_HR and '000001.png' - '002650.png' (renamed to '0901.png' - '3550.png') from .data/Flickr2K/Flickr2K_HR to ./DF2K/DF2K_train_HR. As for downsampled images, I created folders named in ['X2', 'X3', 'X4'] under ./DF2K/DF2K_train_LR_bicubic and copied related images from DIV2K_train_LR_bicubic and Flickr2K_LR_bicubic (with images renamed as '0001x_.png' to '3550x_.png'). At the first and second stages of binarization (binarizing HR images and X4 LR images), it seems OK, but then the above error emerged. It's kind of weird since the total training images are 900 + 2650 and I have no idea why it returned to binarize the HR images after binarizing X4 LR images. I'm new to SR and have tried to look up for data preparation of DF2K in other SR repos, but in vain. I wonder how you actually get DF2K images binarized. Thanks for your help in advance XD

    opened by YouCaiJun98 0
Releases(v0.1)
Owner
Huan Wang
B.E. and M.S. graduate from Zhejiang University, China. Now Ph.D. candidate at Northeastern, USA. I work on interpretable model compression and daydreaming.
Huan Wang
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.

bbc-speech-segmenter: Voice Activity Detection & Speaker Diarization A complete speech segmentation system using Kaldi and x-vectors for voice activit

BBC 16 Oct 27, 2022
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 07, 2022
CCCL: Contrastive Cascade Graph Learning.

CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr

Xovee Xu 19 Dec 05, 2022
ReAct: Out-of-distribution Detection With Rectified Activations

ReAct: Out-of-distribution Detection With Rectified Activations This is the source code for paper ReAct: Out-of-distribution Detection With Rectified

38 Dec 05, 2022
This repo contains source code and materials for the TEmporally COherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Nils Thuerey 5.2k Jan 02, 2023
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

53 Dec 16, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat

Microsoft 8.4k Dec 28, 2022
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:

Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting

37 Dec 04, 2022
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
Baselines for TrajNet++

TrajNet++ : The Trajectory Forecasting Framework PyTorch implementation of Human Trajectory Forecasting in Crowds: A Deep Learning Perspective TrajNet

VITA lab at EPFL 183 Jan 05, 2023
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". **The code is in the "master

杨攀 93 Jan 07, 2023