[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"

Overview

ASSL

This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR), introduced in our NeurIPS 2021 Spotlight paper:

Aligned Structured Sparsity Learning for Efficient Image Super-Resolution [Camera Ready]
Yulun Zhang*, Huan Wang*, Can Qin, and Yun Fu (*Contribute Equally)
Northeastern University, Boston, MA, USA

Stay tuned!

You might also like...
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

PyTorch code for our paper
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

PyTorch code for our ECCV 2018 paper
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Official implementation of our paper
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

Comments
  • Could you share the code with me?

    Could you share the code with me?

    @MingSun-Tse Thanks for your excellent work. I read the paper ,and I want to learn the details. Could you share the paper with me? Thank you very much!!

    opened by ciwei123 3
  • Why simply use the first constrained layer as pruning template for all constrained layers?

    Why simply use the first constrained layer as pruning template for all constrained layers?

    From the observation of training results, the hard mask's weights between the constrained layers are not exactly aligned. https://github.com/MingSun-Tse/ASSL/blob/a564556c8b578c2ee86d135044f088bfeaafc707/src/pruner/utils.py#L71

    opened by yumath 2
  • Questions about implementation detail

    Questions about implementation detail

    hello , I have some questiones about implementation details.

    Data are obtained using the HR-LR data pairs obtained by the down-sampling code provided in BasicSR. The training data was DF2K (900 DIV2K + 2650 Flickr2K), and the test data was Set5.

    I run this command to prune the EDSR_16_256 model to EDSR_16_48. Only the pruning ratio and storage path name are modified compared to the command provided by the official.

    Prune from 256 to 48, pr=0.8125, x2, ASSL

    python main.py --model LEDSR --scale 2 --patch_size 96 --ext sep --dir_data /home/notebook/data/group_cpfs/wurongyuan/data/data
    --data_train DF2K --data_test DF2K --data_range 1-3550/3551-3555 --chop --save_results --n_resblocks 16 --n_feats 256
    --method ASSL --wn --stage_pr [0-1000:0.8125] --skip_layers *mean*,*tail*
    --same_pruned_wg_layers model.head.0,model.body.16,*body.2 --reg_upper_limit 0.5 --reg_granularity_prune 0.0001
    --update_reg_interval 20 --stabilize_reg_interval 43150 --pre_train pretrained_models/LEDSR_F256R16BIX2_DF2K_M311.pt
    --same_pruned_wg_criterion reg --save main/SR/LEDSR_F256R16BIX2_DF2K_ASSL_0.8125_RGP0.0001_RUL0.5_Pretrain_06011101 Results model_just_finished_prune ---> 33.739dB fine-tuning after one epoch ---> 37.781dB fine-tuning after 756 epoch ---> 37.940dB

    The result (37.940dB) I obtained with the code provided by the official is still a certain gap from the result in the paper (38.12dB). I should have overlooked some details.

    I also compared L1-norm method provided in the code. Prune from 256 to 48, pr=0.8125, x2, L1

    python main.py --model LEDSR --scale 2 --patch_size 96 --ext sep --dir_data /home/notebook/data/group_cpfs/wurongyuan/data/data
    --data_train DF2K --data_test DF2K --data_range 1-3550/3551-3555 --chop --save_results --n_resblocks 16 --n_feats 256
    --method L1 --wn --stage_pr [0-1000:0.8125] --skip_layers *mean*,*tail*
    --same_pruned_wg_layers model.head.0,model.body.16,*body.2 --reg_upper_limit 0.5 --reg_granularity_prune 0.0001
    --update_reg_interval 20 --stabilize_reg_interval 43150 --pre_train pretrained_models/LEDSR_F256R16BIX2_DF2K_M311.pt
    --same_pruned_wg_criterion reg --save main/SR/LEDSR_F256R16BIX2_DF2K_L1_0.8125_06011101

    Results

    model_just_finished_prune ---> 13.427dB fine-tuning after one epoch ---> 33.202dB fine-tuning after 756 epoch ---> 37.933dB

    The difference between the results of L1-norm method and those of ASSL seems negligible at this pruning ratio (256->48)

    Is there something I missed? Looking forward to your reply! >-<

    opened by wurongyuan 2
  • Questions on Data Preparation

    Questions on Data Preparation

    Hello and thanks for your amazing work! When I try to reproduce the paper results, I met some trouble binarizing the DF2K data:

    data/DF2K/bin/DF2K_train_LR_bicubic/X4/3548x4.pt does not exist. Now making binary...
    Direct pt file without name or image
    data/DF2K/bin/DF2K_train_LR_bicubic/X4/3549x4.pt does not exist. Now making binary...
    Direct pt file without name or image
    data/DF2K/bin/DF2K_train_LR_bicubic/X4/3550x4.pt does not exist. Now making binary...
    Direct pt file without name or image
    data/DF2K/bin/DF2K_train_HR/3551.pt does not exist. Now making binary...
    Traceback (most recent call last):
    ...
    FileNotFoundError: No such file: '/home/nfs_data/shixiangsheng/projects/ModelCompression/Prune/ASSL/src/data/DF2K/DF2K_train_HR/3551.png'
    

    I created dirs like this: ----data |__DF2K |__DF2K_train_HR |__DF2K_train_LR_bicubic

    I put '0001.png' - '0900.png' from ./data/DIV2K/DIV2K_train_HR and '000001.png' - '002650.png' (renamed to '0901.png' - '3550.png') from .data/Flickr2K/Flickr2K_HR to ./DF2K/DF2K_train_HR. As for downsampled images, I created folders named in ['X2', 'X3', 'X4'] under ./DF2K/DF2K_train_LR_bicubic and copied related images from DIV2K_train_LR_bicubic and Flickr2K_LR_bicubic (with images renamed as '0001x_.png' to '3550x_.png'). At the first and second stages of binarization (binarizing HR images and X4 LR images), it seems OK, but then the above error emerged. It's kind of weird since the total training images are 900 + 2650 and I have no idea why it returned to binarize the HR images after binarizing X4 LR images. I'm new to SR and have tried to look up for data preparation of DF2K in other SR repos, but in vain. I wonder how you actually get DF2K images binarized. Thanks for your help in advance XD

    opened by YouCaiJun98 0
Releases(v0.1)
Owner
Huan Wang
B.E. and M.S. graduate from Zhejiang University, China. Now Ph.D. candidate at Northeastern, USA. I work on interpretable model compression and daydreaming.
Huan Wang
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021]

Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021] This repository is the official implementation of Moiré Attack (MA): A New Pot

Dantong Niu 22 Dec 24, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Silver 47 Jan 03, 2023
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

BCMI 53 Nov 15, 2022
Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually

Portrait Segmentation using Tensorflow This script removes the background from an input image. You can read more about segmentation here Setup The scr

291 Dec 24, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
🏅 The Most Comprehensive List of Kaggle Solutions and Ideas 🏅

🏅 Collection of Kaggle Solutions and Ideas 🏅

Farid Rashidi 2.3k Jan 08, 2023
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 04, 2023
Codeflare - Scale complex AI/ML pipelines anywhere

Scale complex AI/ML pipelines anywhere CodeFlare is a framework to simplify the integration, scaling and acceleration of complex multi-step analytics

CodeFlare 169 Nov 29, 2022
Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision

MLP Mixer Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision. Give us a star if you like this repo. Author: Github: bangoc123 Emai

Ngoc Nguyen Ba 86 Dec 10, 2022
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas

50 Nov 26, 2022
Supervised domain-agnostic prediction framework for probabilistic modelling

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data

The Alan Turing Institute 112 Oct 23, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022