Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Overview

Random Erasing Data Augmentation

===============================================================

Examples

black white random
i1 i2 i3
i4 i5 i6

This code has the source code for the paper "Random Erasing Data Augmentation".

If you find this code useful in your research, please consider citing:

@inproceedings{zhong2020random,
title={Random Erasing Data Augmentation},
author={Zhong, Zhun and Zheng, Liang and Kang, Guoliang and Li, Shaozi and Yang, Yi},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)},
year={2020}
}

Other re-implementations

[Official Torchvision in Transform]

[Pytorch: Random Erasing for ImageNet]

[Python Augmentor]

[Person_reID CamStyle]

[Person_reID_baseline + Random Erasing + Re-ranking]

[Keras re-implementation]

Installation

Requirements for Pytorch (see Pytorch installation instructions)

Examples:

CIFAR10

ResNet-20 baseline on CIFAR10: python cifar.py --dataset cifar10 --arch resnet --depth 20

ResNet-20 + Random Erasing on CIFAR10: python cifar.py --dataset cifar10 --arch resnet --depth 20 --p 0.5

CIFAR100

ResNet-20 baseline on CIFAR100: python cifar.py --dataset cifar100 --arch resnet --depth 20

ResNet-20 + Random Erasing on CIFAR100: python cifar.py --dataset cifar100 --arch resnet --depth 20 --p 0.5

Fashion-MNIST

ResNet-20 baseline on Fashion-MNIST: python fashionmnist.py --dataset fashionmnist --arch resnet --depth 20

ResNet-20 + Random Erasing on Fashion-MNIST: python fashionmnist.py --dataset fashionmnist --arch resnet --depth 20 --p 0.5

Other architectures

For ResNet: --arch resnet --depth (20, 32, 44, 56, 110)

For WRN: --arch wrn --depth 28 --widen-factor 10

Our results

You can reproduce the results in our paper:

 CIFAR10 CIFAR10 CIFAR100 CIFAR100 Fashion-MNIST Fashion-MNIST
Models  Base. +RE Base. +RE Base. +RE
ResNet-20  7.21 6.73 30.84 29.97 4.39 4.02
ResNet-32  6.41 5.66 28.50 27.18 4.16 3.80
ResNet-44  5.53 5.13 25.27 24.29 4.41 4.01
ResNet-56  5.31 4.89 24.82 23.69 4.39 4.13
ResNet-110  5.10 4.61 23.73 22.10 4.40 4.01
WRN-28-10  3.80 3.08 18.49 17.73 4.01 3.65

NOTE THAT, if you use the latest released Fashion-MNIST, the performance of Baseline and RE will slightly lower than the results reported in our paper. Please refer to the issue.

If you have any questions about this code, please do not hesitate to contact us.

Zhun Zhong

Liang Zheng

Owner
Zhun Zhong
Zhun Zhong
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

30 Nov 12, 2022
Codes for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”

DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change

Mengxi Liu 41 Dec 14, 2022
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
Atomistic Line Graph Neural Network

Table of Contents Introduction Installation Examples Pre-trained models Quick start using colab JARVIS-ALIGNN webapp Peformances on a few datasets Use

National Institute of Standards and Technology 91 Dec 30, 2022
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
This is a Python Module For Encryption, Hashing And Other stuff

EnroCrypt This is a Python Module For Encryption, Hashing And Other Basic Stuff You Need, With Secure Encryption And Strong Salted Hashing You Can Do

5 Sep 15, 2022
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).

Fastformer-Keras Unofficial Tensorflow-Keras implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Tensorflo

Yam Peleg 10 Jan 30, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022