Implementation for Panoptic-PolarNet (CVPR 2021)

Overview

Panoptic-PolarNet

This is the official implementation of Panoptic-PolarNet.

[ArXiv paper]

Introduction

Panoptic-PolarNet is a fast and robust LiDAR point cloud panoptic segmentation framework. We learn both semantic segmentation and class-agnostic instance clustering in a single inference network using a polar Bird's Eye View (BEV) representation. Predictions from the semantic and instance head are then fused through a majority voting to create the final panopticsegmentation.

We test Panoptic-PolarNet on SemanticKITTI and nuScenes datasets. Experiment shows that Panoptic-PolarNet reaches state-of-the-art performances with a real-time inference speed.

Prepare dataset and environment

This code is tested on Ubuntu 16.04 with Python 3.8, CUDA 10.2 and Pytorch 1.7.0.

1, Install the following dependencies by either pip install -r requirements.txt or manual installation.

2, Download Velodyne point clouds and label data in SemanticKITTI dataset here.

3, Extract everything into the same folder. The folder structure inside the zip files of label data matches the folder structure of the LiDAR point cloud data.

4, Data file structure should look like this:

./
├── train.py
├── ...
└── data/
    ├──sequences
        ├── 00/           
        │   ├── velodyne/	# Unzip from KITTI Odometry Benchmark Velodyne point clouds.
        |   |	├── 000000.bin
        |   |	├── 000001.bin
        |   |	└── ...
        │   └── labels/ 	# Unzip from SemanticKITTI label data.
        |       ├── 000000.label
        |       ├── 000001.label
        |       └── ...
        ├── ...
        └── 21/
	    └── ...

5, Instance preprocessing:

python instance_preprocess.py -d </your data path> -o </preprocessed file output path>

Training

Run

python train.py

The code will automatically train, validate and save the model that has the best validation PQ.

Panoptic-PolarNet with default setting requires around 11GB GPU memory for the training. Training model on GPU with less memory would likely cause GPU out-of-memory. In this case, you can set the grid_size in the config file to [320,240,32] or lower.

Evaluate our pretrained model

We also provide a pretrained Panoptic-PolarNet weight.

python test_pretrain.py

Result will be stored in ./out folder. Test performance can be evaluated by uploading label results onto the SemanticKITTI competition website here.

Citation

Please cite our paper if this code benefits your research:

@inproceedings{Zhou2021PanopticPolarNet,
author={Zhou, Zixiang and Zhang, Yang and Foroosh, Hassan},
title={Panoptic-PolarNet: Proposal-free LiDAR Point Cloud Panoptic Segmentation},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2021}
}

@InProceedings{Zhang_2020_CVPR,
author = {Zhang, Yang and Zhou, Zixiang and David, Philip and Yue, Xiangyu and Xi, Zerong and Gong, Boqing and Foroosh, Hassan},
title = {PolarNet: An Improved Grid Representation for Online LiDAR Point Clouds Semantic Segmentation},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}
Owner
Zixiang Zhou
Zixiang Zhou
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021

Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi

Md Amirul Islam 32 Apr 24, 2022
Efficiently Disentangle Causal Representations

Efficiently Disentangle Causal Representations Install dependency pip install -r requirements.txt Main experiments Causality direction prediction cd

4 Apr 01, 2022
Deep-learning-roadmap - All You Need to Know About Deep Learning - A kick-starter

Deep Learning - All You Need to Know Sponsorship To support maintaining and upgrading this project, please kindly consider Sponsoring the project deve

Instill AI 4.4k Dec 26, 2022
Cross-platform-profile-pic-changer - Script to change profile pictures across multiple platforms

cross-platform-profile-pic-changer script to change profile pictures across mult

4 Jan 17, 2022
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022
Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant.

Marvis v1.0 Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant. About M.A.R.V.I.S. J.A.R.V.I.S. is a fictional character

Reda Mastouri 1 Dec 29, 2021
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
Proof-Of-Concept Piano-Drums Music AI Model/Implementation

Rock Piano "When all is one and one is all, that's what it is to be a rock and not to roll." ---Led Zeppelin, "Stairway To Heaven" Proof-Of-Concept Pi

Alex 4 Nov 28, 2021
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
FairMOT for Multi-Class MOT using YOLOX as Detector

FairMOT-X Project Overview FairMOT-X is a multi-class multi object tracker, which has been tailored for training on the BDD100K MOT Dataset. It makes

Jonathan Tan 33 Dec 28, 2022
Unofficial Implementation of Oboe (SIGCOMM'18').

Oboe-Reproduce This is the unofficial implementation of the paper "Oboe: Auto-tuning video ABR algorithms to network conditions, Zahaib Akhtar, Yun Se

Tianchi Huang 13 Nov 04, 2022
A curated list of awesome neural radiance fields papers

Awesome Neural Radiance Fields A curated list of awesome neural radiance fields papers, inspired by awesome-computer-vision. How to submit a pull requ

Yen-Chen Lin 3.9k Dec 27, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

OpenSurfaces Segmentation UI This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool.

Sean Bell 66 Jul 11, 2022
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023