The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Overview

Habitat-Matterport 3D Dataset (HM3D)

The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000 high-resolution 3D scans (or digital twins) of building-scale residential, commercial, and civic spaces generated from real-world environments.

HM3D is free and available here for academic, non-commercial research. Researchers can use it with FAIR’s Habitat simulator to train embodied agents, such as home robots and AI assistants, at scale.

example

This repository contains the code and instructions to reproduce experiments from our NeurIPS 2021 paper. If you use the HM3D dataset or the experimental code in your research, please cite the HM3D paper.

@inproceedings{ramakrishnan2021hm3d,
  title={Habitat-Matterport 3D Dataset ({HM}3D): 1000 Large-scale 3D Environments for Embodied {AI}},
  author={Santhosh Kumar Ramakrishnan and Aaron Gokaslan and Erik Wijmans and Oleksandr Maksymets and Alexander Clegg and John M Turner and Eric Undersander and Wojciech Galuba and Andrew Westbury and Angel X Chang and Manolis Savva and Yili Zhao and Dhruv Batra},
  booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)},
  year={2021},
  url={https://openreview.net/forum?id=-v4OuqNs5P}
}

Please check out our website for details on downloading and visualizing the HM3D dataset.

Installation instructions

We provide a common set of instructions to setup the environment to run all our experiments.

  1. Clone the HM3D github repository and add it to PYTHONPATH.

    git clone https://github.com/facebookresearch/habitat-matterport3d-dataset.git
    cd habitat-matterport3d-dataset
    export PYTHONPATH=$PYTHONPATH:$PWD
    
  2. Create conda environment and activate it.

    conda create -n hm3d python=3.8.3
    conda activate hm3d
    
  3. Install habitat-sim using conda.

    conda install habitat-sim headless -c conda-forge -c aihabitat
    

    See habitat-sim's installation instructions for more details.

  4. Install trimesh with soft dependencies.

    pip install "trimesh[easy]==3.9.1"
    
  5. Install remaining requirements from pip.

    pip install -r requirements.txt
    

Downloading datasets

In our paper, we benchmarked HM3D against prior indoor scene datasets such as Gibson, MP3D, RoboThor, Replica, and ScanNet.

  • Download each dataset based on these instructions from habitat-sim. In the case of RoboThor, convert the raw scan assets to GLB using assimp.

    assimp export  
         
    
         
  • Once the datasets are download and processed, create environment variables pointing to the corresponding scene paths.

    export GIBSON_ROOT=
         
          
    export MP3D_ROOT=
          
           
    export ROBOTHOR_ROOT=
           
            
    export HM3D_ROOT=
            
             
    export REPLICA_ROOT=
             
               export SCANNET_ROOT=
               
              
             
            
           
          
         

Running experiments

We provide the code for reproducing the results from our paper in different directories.

  • scale_comparison contains the code for comparing the scale of HM3D with other datasets (Tab. 1 in the paper).
  • quality_comparison contains the code for comparing the reconstruction completeness and visual fidelity of HM3D with other datasets (Fig. 4 and Tab. 5 in the paper).
  • pointnav_comparison contains the configs and instructions to train and evaluate PointNav agents on HM3D and other datasets (Tab. 2 and Fig. 7 in the paper).

We further provide README files within each directory with instructions for running the corresponding experiments.

Acknowledgements

We thank all the volunteers who contributed to the dataset curation effort: Harsh Agrawal, Sashank Gondala, Rishabh Jain, Shawn Jiang, Yash Kant, Noah Maestre, Yongsen Mao, Abhinav Moudgil, Sonia Raychaudhuri, Ayush Shrivastava, Andrew Szot, Joanne Truong, Madhawa Vidanapathirana, Joel Ye. We thank our collaborators at Matterport for their contributions to the dataset: Conway Chen, Victor Schwartz, Nicole Rogers, Sachal Dhillon, Raghu Munaswamy, Mark Anderson.

License

The code in this repository is MIT licensed. See the LICENSE file for details. The trained models are considered data derived from the correspondent scene datasets.

Owner
Meta Research
Meta Research
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022
Robust Partial Matching for Person Search in the Wild

APNet for Person Search Introduction This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part

Yingji Zhong 36 Dec 18, 2022
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

349 Dec 08, 2022
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023
Pmapper is a super-resolution and deconvolution toolkit for python 3.6+

pmapper pmapper is a super-resolution and deconvolution toolkit for python 3.6+. PMAP stands for Poisson Maximum A-Posteriori, a highly flexible and a

NASA Jet Propulsion Laboratory 8 Nov 06, 2022
The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds The why Im

3 Mar 29, 2022
TensorFlow Tutorials with YouTube Videos

TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne

9.1k Jan 02, 2023
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

NAS-HPO-Bench-II API Overview NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs. It helps a fair and low-

yoichi hirose 8 Nov 21, 2022
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021
Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments

Cascaded-FCN This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of

300 Nov 22, 2022
TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

TransPrompt This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Cla

WangJianing 23 Dec 21, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
202 Jan 06, 2023