DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现

Overview

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现


目录

  1. 性能情况 Performance
  2. 所需环境 Environment
  3. 注意事项 Attention
  4. 文件下载 Download
  5. 训练步骤 How2train
  6. 预测步骤 How2predict
  7. 评估步骤 miou
  8. 参考资料 Reference

性能情况

训练数据集 权值文件名称 测试数据集 输入图片大小 mIOU
VOC12+SBD deeplabv3_mobilenetv2.h5 VOC-Val12 512x512 72.50
VOC12+SBD deeplabv3_xception.h5 VOC-Val12 512x512 87.10

所需环境

tensorflow==2.2.0

注意事项

代码中的deeplabv3_mobilenetv2.h5和deeplabv3_xception.h5是基于VOC拓展数据集训练的。训练和预测时注意修改backbone。

文件下载

训练所需的deeplabv3_mobilenetv2.h5和deeplabv3_xception.h5可在百度网盘中下载。
链接: https://pan.baidu.com/s/1zVRshWRkb5C3kmDMwEf89A 提取码: ccq5

VOC拓展数据集的百度网盘如下:
链接: https://pan.baidu.com/s/1BrR7AUM1XJvPWjKMIy2uEw 提取码: vszf

训练步骤

a、训练voc数据集

1、将我提供的voc数据集放入VOCdevkit中(无需运行voc_annotation.py)。
2、在train.py中设置对应参数,默认参数已经对应voc数据集所需要的参数了,所以只要修改backbone和model_path即可。
3、运行train.py进行训练。

b、训练自己的数据集

1、本文使用VOC格式进行训练。
2、训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的SegmentationClass中。
3、训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
4、在训练前利用voc_annotation.py文件生成对应的txt。
5、在train.py文件夹下面,选择自己要使用的主干模型和下采样因子。本文提供的主干模型有mobilenet和xception。下采样因子可以在8和16中选择。需要注意的是,预训练模型需要和主干模型相对应。
6、注意修改train.py的num_classes为分类个数+1。
7、运行train.py即可开始训练。

预测步骤

a、使用预训练权重

1、下载完库后解压,如果想用backbone为mobilenet的进行预测,直接运行predict.py就可以了;如果想要利用backbone为xception的进行预测,在百度网盘下载deeplab_xception.h5,放入model_data,修改deeplab.py的backbone和model_path之后再运行predict.py,输入。

img/street.jpg

可完成预测。
2、在predict.py里面进行设置可以进行fps测试、整个文件夹的测试和video视频检测。

b、使用自己训练的权重

1、按照训练步骤训练。
2、在deeplab.py文件里面,在如下部分修改model_path、num_classes、backbone使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,num_classes代表要预测的类的数量加1,backbone是所使用的主干特征提取网络

_defaults = {
    #----------------------------------------#
    #   model_path指向logs文件夹下的权值文件
    #----------------------------------------#
    "model_path"        : 'model_data/deeplabv3_mobilenetv2.h5',
    #----------------------------------------#
    #   所需要区分的类的个数+1
    #----------------------------------------#
    "num_classes"       : 21,
    #----------------------------------------#
    #   所使用的的主干网络:mobilenet、xception    
    #----------------------------------------#
    "backbone"          : "mobilenet",
    #----------------------------------------#
    #   输入图片的大小
    #----------------------------------------#
    "input_shape"       : [512, 512],
    #----------------------------------------#
    #   下采样的倍数,一般可选的为8和16
    #   与训练时设置的一样即可
    #----------------------------------------#
    "downsample_factor" : 16,
    #--------------------------------#
    #   blend参数用于控制是否
    #   让识别结果和原图混合
    #--------------------------------#
    "blend"             : True,
}

3、运行predict.py,输入

img/street.jpg

可完成预测。
4、在predict.py里面进行设置可以进行fps测试、整个文件夹的测试和video视频检测。

评估步骤

1、设置get_miou.py里面的num_classes为预测的类的数量加1。
2、设置get_miou.py里面的name_classes为需要去区分的类别。
3、运行get_miou.py即可获得miou大小。

Reference

https://github.com/ggyyzm/pytorch_segmentation
https://github.com/bonlime/keras-deeplab-v3-plus

You might also like...
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Official Implementation for
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

A Joint Video and Image Encoder for End-to-End Retrieval
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval project page | arXiv | webvid-data Repository containing the code,

PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Code for the paper
Code for the paper "Adversarial Generator-Encoder Networks"

This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr

PyTorch implementation of SQN based on CloserLook3D's encoder

SQN_pytorch This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, che

Comments
  • How to reproduce the model deeplabv3_xception.h5?

    How to reproduce the model deeplabv3_xception.h5?

    Hi, I'm trying to train deeplabv3 with xception backbone on voc + SBD dataset. You provided the voc pretrained model deeplabv3_xception.h5. But If I want to reproduce your training result, I should not use it as pretrained model, right? So I comment out the line in train.py to not loading pretrained weights. But after 100 epochs, my model accuracy is poor, compared with your model. Did I miss something, do I need something like an ImageNet pretrained model or COCO pretrained model? Thanks!

    opened by zhimengf 6
  • How to export a .pb file

    How to export a .pb file

    Hi, I have problem exporting a .pb file with the current produced .h5 files. I do not think you have provided the export method in the project file. Could you please give me some advice on that? @bubbliiiing

    opened by 77knight 1
Releases(v3.0)
  • v3.0(Apr 22, 2022)

    重要更新

    • 支持step、cos学习率下降法。
    • 支持adam、sgd优化器选择。
    • 支持学习率根据batch_size自适应调整。
    • 支持不同预测模式的选择,单张图片预测、文件夹预测、视频预测、图片裁剪。
    • 更新summary.py文件,用于观看网络结构。
    • 增加了多GPU训练。
    Source code(tar.gz)
    Source code(zip)
  • v2.0(Mar 4, 2022)

    重要更新

    • 更新train.py文件,增加了大量的注释,增加多个可调整参数。
    • 更新predict.py文件,增加了大量的注释,增加fps、视频预测、批量预测等功能。
    • 更新deeplab.py文件,增加了大量的注释,增加先验框选择、置信度、非极大抑制等参数。
    • 合并get_dr_txt.py、get_gt_txt.py和get_map.py文件,通过一个文件来实现数据集的评估。
    • 更新voc_annotation.py文件,增加多个可调整参数。
    • 更新summary.py文件,用于观看网络结构。
    Source code(tar.gz)
    Source code(zip)
Owner
Bubbliiiing
Bubbliiiing
Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

Deep Learning with TensorFlow 2 and Keras – Notebooks This project accompanies my Deep Learning with TensorFlow 2 and Keras trainings. It contains the

Aurélien Geron 1.9k Dec 15, 2022
An educational resource to help anyone learn deep reinforcement learning.

Status: Maintenance (expect bug fixes and minor updates) Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that ma

OpenAI 7.6k Jan 09, 2023
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
A code implementation of AC-GC: Activation Compression with Guaranteed Convergence, in NeurIPS 2021.

Code For AC-GC: Lossy Activation Compression with Guaranteed Convergence This code is intended to be used as a supplemental material for submission to

Dave Evans 2 Nov 01, 2022
Plotting points that lie on the intersection of the given curves using gradient descent.

Plotting intersection of curves using gradient descent Webapp Link --- What's the app about Why this app Plotting functions and their intersection. A

Divakar Verma 2 Jan 09, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video 🔥 | Colab demo Deep Exemplar-based Video Col

Bo Zhang 253 Dec 27, 2022
Implementation of CVPR'2022:Surface Reconstruction from Point Clouds by Learning Predictive Context Priors

Surface Reconstruction from Point Clouds by Learning Predictive Context Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository c

136 Dec 12, 2022
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

130 Dec 05, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

Wang Yucheng 30 Dec 18, 2022
Generalized Decision Transformer for Offline Hindsight Information Matching

Generalized Decision Transformer for Offline Hindsight Information Matching [arxiv] If you use this codebase for your research, please cite the paper:

Hiroki Furuta 35 Dec 12, 2022
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

144 Dec 30, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
Sentinel-1 vessel detection model used in the xView3 challenge

sar_vessel_detect Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR

AI2 6 Sep 10, 2022
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Lukas Hedegaard 21 Dec 22, 2022
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022