This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Overview

Skeleton Aware Multi-modal Sign Language Recognition

By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu.

Smile Lab @ Northeastern University

Python 3.7 Packagist Last Commit License: CC0 4.0 PWC


This repo contains the official code of Skeleton Aware Multi-modal Sign Language Recognition (SAM-SLR) that ranked 1st in CVPR 2021 Challenge: Looking at People Large Scale Signer Independent Isolated Sign Language Recognition.

Our paper has been accepted to CVPR21 Workshop. A preprint version is available on arXiv. Please cite our paper if you find this repo useful in your research.

News

[2021/04/10] Our workshop paper has been accepted. Citation info updated.

[2021/03/24] A preprint version of our paper is released here.

[2021/03/20] Our work has been verified and announced by the organizers as the 1st place winner of the challenge!

[2021/03/15] The code is released to public on GitHub.

[2021/03/11] Our team (smilelab2021) ranked 1st in both tracks and here are the links to the leaderboards:

Table of Contents

Data Preparation

Download AUTSL Dataset.

We processed the dataset into six modalities in total: skeleton, skeleton features, rgb frames, flow color, hha and flow depth.

  1. Please put original train, val, test videos in data folder as
    data
    ├── train
    │   ├── signer0_sample1_color.mp4
    │   ├── signer0_sample1_depth.mp4
    │   ├── signer0_sample2_color.mp4
    │   ├── signer0_sample2_depth.mp4
    │   └── ...
    ├── val
    │   └── ...
    └── test
        └── ...
  1. Follow the data_processs/readme.md to process the data.

  2. Use TPose/data_process to extract wholebody pose features.

Requirements and Docker Image

The code is written using Anaconda Python >= 3.6 and Pytorch 1.7 with OpenCV.

Detailed enviroment requirment can be found in requirement.txt in each code folder.

For convenience, we provide a Nvidia docker image to run our code.

Download Docker Image

Pretrained Models

We provide pretrained models for all modalities to reproduce our submitted results. Please download them at and put them into corresponding folders.

Download Pretrained Models

Usage

Reproducing the Results Submitted to CVPR21 Challenge

To test our pretrained model, please put them under each code folders and run the test code as instructed below. To ensemble the tested results and reproduce our final submission. Please copy all the results .pkl files to ensemble/ and follow the instruction to ensemble our final outputs.

For a step-by-step instruction, please see reproduce.md.

Skeleton Keypoints

Skeleton modality can be trained, finetuned and tested using the code in SL-GCN/ folder. Please follow the SL-GCN/readme.md instruction to prepare skeleton data into four streams (joint, bone, joint_motion, bone motion).

Basic usage:

python main.py --config /path/to/config/file

To train, finetune and test our models, please change the config path to corresponding config files. Detailed instruction can be found in SL-GCN/readme.md

Skeleton Feature

For the skeleton feature, we propose a Separable Spatial-Temporal Convolution Network (SSTCN) to capture spatio-temporal information from those features.

Please follow the instruction in SSTCN/readme.txt to prepare the data, train and test the model.

RGB Frames

The RGB frames modality can be trained, finetuned and tested using the following commands in Conv3D/ folder.

python Sign_Isolated_Conv3D_clip.py

python Sign_Isolated_Conv3D_clip_finetune.py

python Sign_Isolated_Conv3D_clip_test.py

Detailed instruction can be found in Conv3D/readme.md

Optical Flow

The RGB optical flow modality can be trained, finetuned and tested using the following commands in Conv3D/ folder.

python Sign_Isolated_Conv3D_flow_clip.py

python Sign_Isolated_Conv3D_flow_clip_funtine.py

python Sign_Isolated_Conv3D_flow_clip_test.py

Detailed instruction can be found in Conv3D/readme.md

Depth HHA

The Depth HHA modality can be trained, finetuned and tested using the following commands in Conv3D/ folder.

python Sign_Isolated_Conv3D_hha_clip_mask.py

python Sign_Isolated_Conv3D_hha_clip_mask_finetune.py

python Sign_Isolated_Conv3D_hha_clip_mask_test.py

Detailed instruction can be found in Conv3D/readme.md

Depth Flow

The Depth Flow modality can be trained, finetuned and tested using the following commands in Conv3D/ folder.

python Sign_Isolated_Conv3D_depth_flow_clip.py

python Sign_Isolated_Conv3D_depth_flow_clip_finetune.py

python Sign_Isolated_Conv3D_depth_flow_clip_test.py

Detailed instruction can be found in Conv3D/readme.md

Model Ensemble

For both RGB and RGBD track, the tested results of all modalities need to be ensemble together to generate the final results.

  1. For RGB track, we use the results from skeleton, skeleton feature, rgb, and flow color modalities to ensemble the final results.

    a. Test the model using newly trained weights or provided pretrained weights.

    b. Copy all the test results to ensemble folder and rename them as their modality names.

    c. Ensemble SL-GCN results from joint, bone, joint motion, bone motion streams in gcn/ .

     python ensemble_wo_val.py; python ensemble_finetune.py
    

    c. Copy test_gcn_w_val_finetune.pkl to ensemble/. Copy RGB, TPose and optical flow results to ensemble/. Ensemble final prediction.

     python ensemble_multimodal_rgb.py
    

    Final predictions are saved in predictions.csv

  2. For RGBD track, we use the results from skeleton, skeleton feature, rgb, flow color, hha and flow depth modalities to ensemble the final results. a. copy hha and flow depth modalities to ensemble/ folder, then

     python ensemble_multimodal_rgb.py
    

To reproduce our results in CVPR21Challenge, we provide .pkl files to ensemble and obtain our final submitted predictions. Detailed instruction can be find in ensemble/readme.md

License

Licensed under the Creative Commons Zero v1.0 Universal license with the following exceptions:

  • The code is released for academic research use only. Commercial use is prohibited.
  • Published versions (changed or unchanged) must include a reference to the origin of the code.

Citation

If you find this project useful in your research, please cite our paper

@inproceedings{jiang2021skeleton,
  title={Skeleton Aware Multi-modal Sign Language Recognition},
  author={Jiang, Songyao and Sun, Bin and Wang, Lichen and Bai, Yue and Li, Kunpeng and Fu, Yun},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
  year={2021}
}

@article{jiang2021skeleton,
  title={Skeleton Aware Multi-modal Sign Language Recognition},
  author={Jiang, Songyao and Sun, Bin and Wang, Lichen and Bai, Yue and Li, Kunpeng and Fu, Yun},
  journal={arXiv preprint arXiv:2103.08833},
  year={2021}
}

Reference

https://github.com/Sun1992/SSTCN-for-SLR

https://github.com/jin-s13/COCO-WholeBody

https://github.com/open-mmlab/mmpose

https://github.com/0aqz0/SLR

https://github.com/kchengiva/DecoupleGCN-DropGraph

https://github.com/HRNet/HRNet-Human-Pose-Estimation

https://github.com/charlesCXK/Depth2HHA

Owner
Isen (Songyao Jiang)
Isen (Songyao Jiang)
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
A curated list of awesome game datasets, and tools to artificial intelligence in games

🎮 Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
Machine learning notebooks in different subjects optimized to run in google collaboratory

Notebooks Name Description Category Link Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the

Zaid Alyafeai 363 Dec 06, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search This is the offical implementation of the

SNU ADSL 0 Feb 07, 2022
GANSketchingJittor - Implementation of Sketch Your Own GAN in Jittor

GANSketching in Jittor Implementation of (Sketch Your Own GAN) in Jittor(计图). Or

Bernard Tan 10 Jul 02, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇

MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is

Jungwoo Park 44 Dec 03, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022