Simple tutorials on Pytorch DDP training

Overview

pytorch-distributed-training

Distribute Dataparallel (DDP) Training on Pytorch

Features

Good Notes

分享一些网上优质的笔记

TODO

  • 完成DP和DDP源码解读笔记(当前进度50%)
  • 修改代码细节, 复现实验结果

Quick start

想直接运行查看结果的可以执行以下命令, 注意一定要用--ip--port来指定主机的ip地址以及空闲的端口,否则可能无法运行

$ python dataparallel.py --gpu 0,1,2,3
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 distributed.py
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python distributed_mp.py
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python distributed_apex.py
  • --ip=str, e.g --ip='10.24.82.10' 来指定主进程的ip地址

  • --port=int, e.g --port=23456 来指定启动端口号

  • --batch_size=int, e.g --batch_size=128 设定训练batch_size

  • distributed_gradient_accumulation.py

$ CUDA_VISIBLE_DEVICES=0,1,2,3 python distributed_apex.py
  • --ip=str, e.g --ip='10.24.82.10' 来指定主进程的ip地址
  • --port=int, e.g --port=23456 来指定启动端口号
  • --grad_accu_steps=int, e.g --grad_accu_steps=4' 来指定gradient_step

Comparison

结果不够准确,GPU状态不同结果可能差异较大

默认情况下都使用SyncBatchNorm, 这会导致执行速度变慢一些,因为需要增加进程之间的通讯来计算BatchNorm, 但有利于保证准确率

Concepts

  • apex
  • DP: DataParallel
  • DDP: DistributedDataParallel

Environments

  • 4 × 2080Ti
model dataset training method time(seconds/epoch) Top-1 accuracy
resnet18 cifar100 DP 20s
resnet18 cifar100 DP+apex 18s
resnet18 cifar100 DDP 16s
resnet18 cifar100 DDP+apex 14.5s

Basic Concept

  • group: 表示进程组,默认情况下只有一个进程组。
  • world size: 全局进程个数
    • 比如16张卡单卡单进程: world size = 16
    • 8卡单进程: world size = 1
    • 只有当连接的进程数等于world size, 程序才会执行
  • rank: 进程序号,用于进程间通讯,表示进程优先级,rank=0表示主进程
  • local_rank: 进程内,GPU编号,非显示参数,由torch.distributed.launch内部指定,rank=3, local_rank=0 表示第3个进程的第1GPU

Usage 单机多卡

1. 获取当前进程的index

pytorch可以通过torch.distributed.lauch启动器,在命令行分布式地执行.py文件, 在执行的过程中会将当前进程的index通过参数传递给python

import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', default=-1, type=int,
                    help='node rank for distributed training')
args = parser.parse_args()
print(args.local_rank)

2. 定义 main_worker 函数

主要的训练流程都写在main_worker函数中,main_worker需要接受三个参数(最后一个参数optional):

def main_worker(local_rank, nprocs, args):
    training...
  • local_rank: 接受当前进程的rank值,在一机多卡的情况下对应使用的GPU号
  • nprocs: 进程数量
  • args: 自己定义的额外参数

main_worker,相当于你每个进程需要运行的函数(每个进程执行的函数内容是一致的,只不过传入的local_rank不一样)

3. main_worker函数中的整体流程

main_worker函数中完整的训练流程

import torch
import torch.distributed as dist
import torch.backends.cudnn as cudnn
def main_worker(local_rank, nprocs, args):
    args.local_rank = local_rank
    # 分布式初始化,对于每个进程来说,都需要进行初始化
    cudnn.benchmark = True
    dist.init_process_group(backend='nccl', init_method='tcp://ip:port', world_size=nprocs, rank=local_rank)
    # 模型、损失函数、优化器定义
    model = ...
    criterion = ...
    optimizer = ...
    # 设置进程对应使用的GPU
    torch.cuda.set_device(local_rank)
    model.cuda(local_rank)
    # 使用分布式函数定义模型
    model = model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank])
    
    # 数据集的定义,使用 DistributedSampler
    mini_batch_size = batch_size / nprocs # 手动划分 batch_size to mini-batch_size
    train_dataset = ...
    train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
    trainloader = torch.utils.data.DataLoader(train_dataset, batch_size=mini_batch_size, num_workers=..., pin_memory=..., 
                                              sampler=train_sampler)
    
    test_dataset = ...
    test_sampler = torch.utils.data.distributed.DistributedSampler(test_dataset)
    testloader = torch.utils.data.DataLoader(train_dataset, batch_size=mini_batch_size, num_workers=..., pin_memory=..., 
                                             sampler=test_sampler) 
    
    # 正常的 train 流程
    for epoch in range(300):
       model.train()
       for batch_idx, (images, target) in enumerate(trainloader):
          images = images.cuda(non_blocking=True)
          target = target.cuda(non_blocking=True)
          ...
          pred = model(images)
          loss = loss_function(pred, target)
          ...
          optimizer.zero_grad()
          loss.backward()
          optimizer.step()

4. 定义main函数

import argparse
import torch
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training')
parser.add_argument('--batch_size','--batch-size', default=256, type=int)
parser.add_argument('--lr', default=0.1, type=float)

def main_worker(local_rank, nprocs, args):
    ...

def main():
    args = parser.parse_args()
    args.nprocs = torch.cuda.device_count()
    # 执行 main_worker
    main_worker(args.local_rank, args.nprocs, args)

if __name__ == '__main__':
    main()

5. Command Line 启动

$ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 distributed.py
  • --ip=str, e.g --ip='10.24.82.10' 来指定主进程的ip地址
  • --port=int, e.g --port=23456 来指定启动端口号

参数说明:

  • --nnodes 表示机器的数量
  • --node_rank 表示当前的机器
  • --nproc_per_node 表示每台机器上的进程数量

参考 distributed.py

6. torch.multiprocessing

使用torch.multiprocessing来解决进程自发控制可能产生问题,这种方式比较稳定,推荐使用

import argparse
import torch
import torch.multiprocessing as mp

parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training')
parser.add_argument('--batch_size','--batch-size', default=256, type=int)
parser.add_argument('--lr', default=0.1, type=float)

def main_worker(local_rank, nprocs, args):
    ...

def main():
    args = parser.parse_args()
    args.nprocs = torch.cuda.device_count()
    # 将 main_worker 放入 mp.spawn 中
    mp.spawn(main_worker, nprocs=args.nprocs, args=(args.nprocs, args))

if __name__ == '__main__':
    main()

参考 distributed_mp.py 启动方式如下:

$ CUDA_VISIBLE_DEVICES=0,1,2,3 python distributed_mp.py
  • --ip=str, e.g --ip='10.24.82.10' 来指定主进程的ip地址
  • --port=int, e.g --port=23456 来指定启动端口号

Implemented Work

参考的文章如下(如果有文章没有引用,但是内容差不多的,可以提issue给我,我会补上,实在抱歉):

Owner
Ren Tianhe
Ren Tianhe
AlphaNet Improved Training of Supernet with Alpha-Divergence

AlphaNet: Improved Training of Supernet with Alpha-Divergence This repository contains our PyTorch training code, evaluation code and pretrained model

Facebook Research 87 Oct 10, 2022
A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

Jin 4 Dec 30, 2022
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Aneta Texler 131 Dec 19, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too

e-Lab 344 Nov 21, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
Implements Gradient Centralization and allows it to use as a Python package in TensorFlow

Gradient Centralization TensorFlow This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique

Rishit Dagli 101 Nov 01, 2022
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T

Taehoon Kim 569 Dec 29, 2022
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

Rishit Dagli 32 Feb 21, 2022
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
Hardware-accelerated DNN model inference ROS2 packages using NVIDIA Triton/TensorRT for both Jetson and x86_64 with CUDA-capable GPU

Isaac ROS DNN Inference Overview This repository provides two NVIDIA GPU-accelerated ROS2 nodes that perform deep learning inference using custom mode

NVIDIA Isaac ROS 62 Dec 14, 2022
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

Rishit Dagli 54 Nov 01, 2022
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and i

yifan liu 147 Dec 03, 2022
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022