PyTorch DepthNet Training on Still Box dataset

Overview

DepthNet training on Still Box

Project page

This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in your work, please cite us with the following bibtex :

@Article{isprs-annals-IV-2-W3-67-2017,
AUTHOR = {Pinard, C. and Chevalley, L. and Manzanera, A. and Filliat, D.},
TITLE = {END-TO-END DEPTH FROM MOTION WITH STABILIZED MONOCULAR VIDEOS},
JOURNAL = {ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences},
VOLUME = {IV-2/W3},
YEAR = {2017},
PAGES = {67--74},
URL = {https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2-W3/67/2017/},
DOI = {10.5194/isprs-annals-IV-2-W3-67-2017}
}

depthnet

End-to-end depth from motion with stabilized monocular videos

  • This code shows how the only translational movement of the camera can be leveraged to compute a very precise depth map, even at more than 300 times the displacement.
  • Thus, for a camera movement of 30cm (nominal displacement used here), you can see as far as 100m.

See our second paper for information about using this code on real videos with speed estimation

Multi range Real-time depth inference from a monocular stabilized footage using a Fully Convolutional Neural Network

Click Below for video

youtube video

DepthNet

DepthNet is a network designed to infer Depth Map directly from a pair of stabilized image.

  • No information is given about movement direction
  • DepthNet is Fully Convolutional, which means it is completely robust to optical center fault
  • This network only works for pinhole-like pictures

Still Box

stillbox

Still box is a dataset created specifically for supervised training of depth map inference for stabilized aerial footage. It tries to mimic typical drone footages in static scenes, and depth is impossible to infer from a single image, as shapes get all kinds of sizes and positions.

  • You can download it here
  • The dataset webpage also provides a tutorial on how to read the data

Training

Requirements

[sudo] pip3 install -r requirements.txt

If you want to log some outputs from the validation set with the --log-output option, you need openCV python bindings to convert depth to RGB with a rainbow colormap.

If you don't have opencv, grayscales will be logged

Usage

Best results can be obtained by training on still box 64 and then finetuned successively up to the resolution you target. Here are the parameters used for the paper (please note how learning rate and batch size are changed, training was done a single GTX 980Ti).

python3 train.py -j8 --lr 0.01 /path/to/still_box/64/ --log-output --activation-function elu --bn
python3 train.py -j8 --lr 0.01 /path/to/still_box/128/ --log-output --activation-function elu --bn --pretrained /path/to/DepthNet64
python3 train.py -j8 --lr 0.001 /path/to/still_box/256/ --log-output --activation-function elu --bn -b64 --pretrained /path/to/DepthNet128
python3 train.py -j8 --lr 0.001 /path/to/still_box/512/ --log-output --activation-function elu --bn -b16 --pretrained /path/to/DepthNet256

Note: You can skip 128 and 256 training if you don't have time, results will be only slightly worse. However, you need to do 64 training first as stated by our first paper. This might has something to do with either the size of 64 dataset (in terms of scene numbers) or the fact that feature maps are reduced down to 1x1 making last convolution a FC equivalent operation

Pretrained networks

Best results were obtained with elu for depth activation (not mentionned in the original paper), along with BatchNorm.

Name training set Error (m)
DepthNet_elu_bn_64.pth.tar 64 4.65 Link
DepthNet_elu_bn_128.pth.tar 128 3.08 Link
DepthNet_elu_bn_256.pth.tar 256 2.29 Link
DepthNet_elu_bn_512.pth.tar 512 1.97 Link

All the networks have the same size and same structure.

Custom FOV and focal length

Every image in still box is 90° of FOV (field of view), focal length (in pixels) is then respectively

  • 32px for 64x64 images
  • 64px for 128x128 images
  • 128px for 128x128 images
  • 256px for 512x512 images

Training is not flexible to focal length, and for a custom focal length you will have to run a dedicated training.

If you need to use a custom focal length and FOV you can simply resize the pictures and crop them.

Say you have a picture of width w with an associated FOV fov. To get equivalent from one of the datasets you can first crop the still box pictures so that FOV will match fov (cropping doesn't affect focal length in pixels), and then resize it to w. Note that DepthNet can take rectangular pictures as input.

cropped_w = w/tan(pi*fov/360)

we naturally recommend to do this operation offline, metadata from metadata.json won't need to be altered.

with pretrained DepthNet

If you can resize your test pictures, thanks to its fully convolutional architecture, DepthNet is flexible to fov, as long as it stays below 90° (or max FOV encountered during training). Referring back to our witdh w and FOV fov we get with a network trained with a particular focal length f the following width to resize to:

resized_w = f/2*tan(pi*fov/360)

That way, you won't have to make a dedicated training or even download the still box dataset


/!\ These equations are only valid with pinhole equivalent cameras. Be sure to correct distortion before using DepthNet

Testing Inference

The run_inference.py lets you run an inference on a folder of images, and save the depth maps in different visualizations.

A simple still box scene of 512x512 pictures for testing can be downloaded here. Otherwise, any folder with a list of jpg images will do, provided you follow the guidelines above.

python3 run_inference.py --output-depth --no-resize --dataset-dir /path/to/stub_box --pretrained /path/to/DepthNet512 --frame-shift 3 --output-dir /path/to/save/outputs

Visualise training

Training can be visualized via tensorboard by launching this command in another terminal

tensorboard --logdir=/path/to/DepthNet/Results

You can then access the board from any computer in the local network by accessing machine_ip:6006 from a web browser, just as a regular tensorboard server. More info here

Owner
Clément Pinard
PhD ENSTA Paris, Deep Learning Engineer @ ContentSquare
Clément Pinard
Quantized tflite models for ailia TFLite Runtime

ailia-models-tflite Quantized tflite models for ailia TFLite Runtime About ailia TFLite Runtime ailia TF Lite Runtime is a TensorFlow Lite compatible

ax Inc. 13 Dec 23, 2022
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
5 Jan 05, 2023
Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Edge Impulse 8 Nov 02, 2022
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022
Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles This project is for the paper: Detecting Errors and Estimating

Jiefeng Chen 13 Nov 21, 2022
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,

130 Dec 11, 2022
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
Implements VQGAN+CLIP for image and video generation, and style transfers, based on text and image prompts. Emphasis on ease-of-use, documentation, and smooth video creation.

VQGAN-CLIP-GENERATOR Overview This is a package (with available notebook) for running VQGAN+CLIP locally, with a focus on ease of use, good documentat

Ryan Hamilton 98 Dec 30, 2022
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"

SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe

Wei Jin 85 Oct 13, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023