PyTorch DepthNet Training on Still Box dataset

Overview

DepthNet training on Still Box

Project page

This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in your work, please cite us with the following bibtex :

@Article{isprs-annals-IV-2-W3-67-2017,
AUTHOR = {Pinard, C. and Chevalley, L. and Manzanera, A. and Filliat, D.},
TITLE = {END-TO-END DEPTH FROM MOTION WITH STABILIZED MONOCULAR VIDEOS},
JOURNAL = {ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences},
VOLUME = {IV-2/W3},
YEAR = {2017},
PAGES = {67--74},
URL = {https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2-W3/67/2017/},
DOI = {10.5194/isprs-annals-IV-2-W3-67-2017}
}

depthnet

End-to-end depth from motion with stabilized monocular videos

  • This code shows how the only translational movement of the camera can be leveraged to compute a very precise depth map, even at more than 300 times the displacement.
  • Thus, for a camera movement of 30cm (nominal displacement used here), you can see as far as 100m.

See our second paper for information about using this code on real videos with speed estimation

Multi range Real-time depth inference from a monocular stabilized footage using a Fully Convolutional Neural Network

Click Below for video

youtube video

DepthNet

DepthNet is a network designed to infer Depth Map directly from a pair of stabilized image.

  • No information is given about movement direction
  • DepthNet is Fully Convolutional, which means it is completely robust to optical center fault
  • This network only works for pinhole-like pictures

Still Box

stillbox

Still box is a dataset created specifically for supervised training of depth map inference for stabilized aerial footage. It tries to mimic typical drone footages in static scenes, and depth is impossible to infer from a single image, as shapes get all kinds of sizes and positions.

  • You can download it here
  • The dataset webpage also provides a tutorial on how to read the data

Training

Requirements

[sudo] pip3 install -r requirements.txt

If you want to log some outputs from the validation set with the --log-output option, you need openCV python bindings to convert depth to RGB with a rainbow colormap.

If you don't have opencv, grayscales will be logged

Usage

Best results can be obtained by training on still box 64 and then finetuned successively up to the resolution you target. Here are the parameters used for the paper (please note how learning rate and batch size are changed, training was done a single GTX 980Ti).

python3 train.py -j8 --lr 0.01 /path/to/still_box/64/ --log-output --activation-function elu --bn
python3 train.py -j8 --lr 0.01 /path/to/still_box/128/ --log-output --activation-function elu --bn --pretrained /path/to/DepthNet64
python3 train.py -j8 --lr 0.001 /path/to/still_box/256/ --log-output --activation-function elu --bn -b64 --pretrained /path/to/DepthNet128
python3 train.py -j8 --lr 0.001 /path/to/still_box/512/ --log-output --activation-function elu --bn -b16 --pretrained /path/to/DepthNet256

Note: You can skip 128 and 256 training if you don't have time, results will be only slightly worse. However, you need to do 64 training first as stated by our first paper. This might has something to do with either the size of 64 dataset (in terms of scene numbers) or the fact that feature maps are reduced down to 1x1 making last convolution a FC equivalent operation

Pretrained networks

Best results were obtained with elu for depth activation (not mentionned in the original paper), along with BatchNorm.

Name training set Error (m)
DepthNet_elu_bn_64.pth.tar 64 4.65 Link
DepthNet_elu_bn_128.pth.tar 128 3.08 Link
DepthNet_elu_bn_256.pth.tar 256 2.29 Link
DepthNet_elu_bn_512.pth.tar 512 1.97 Link

All the networks have the same size and same structure.

Custom FOV and focal length

Every image in still box is 90° of FOV (field of view), focal length (in pixels) is then respectively

  • 32px for 64x64 images
  • 64px for 128x128 images
  • 128px for 128x128 images
  • 256px for 512x512 images

Training is not flexible to focal length, and for a custom focal length you will have to run a dedicated training.

If you need to use a custom focal length and FOV you can simply resize the pictures and crop them.

Say you have a picture of width w with an associated FOV fov. To get equivalent from one of the datasets you can first crop the still box pictures so that FOV will match fov (cropping doesn't affect focal length in pixels), and then resize it to w. Note that DepthNet can take rectangular pictures as input.

cropped_w = w/tan(pi*fov/360)

we naturally recommend to do this operation offline, metadata from metadata.json won't need to be altered.

with pretrained DepthNet

If you can resize your test pictures, thanks to its fully convolutional architecture, DepthNet is flexible to fov, as long as it stays below 90° (or max FOV encountered during training). Referring back to our witdh w and FOV fov we get with a network trained with a particular focal length f the following width to resize to:

resized_w = f/2*tan(pi*fov/360)

That way, you won't have to make a dedicated training or even download the still box dataset


/!\ These equations are only valid with pinhole equivalent cameras. Be sure to correct distortion before using DepthNet

Testing Inference

The run_inference.py lets you run an inference on a folder of images, and save the depth maps in different visualizations.

A simple still box scene of 512x512 pictures for testing can be downloaded here. Otherwise, any folder with a list of jpg images will do, provided you follow the guidelines above.

python3 run_inference.py --output-depth --no-resize --dataset-dir /path/to/stub_box --pretrained /path/to/DepthNet512 --frame-shift 3 --output-dir /path/to/save/outputs

Visualise training

Training can be visualized via tensorboard by launching this command in another terminal

tensorboard --logdir=/path/to/DepthNet/Results

You can then access the board from any computer in the local network by accessing machine_ip:6006 from a web browser, just as a regular tensorboard server. More info here

Owner
Clément Pinard
PhD ENSTA Paris, Deep Learning Engineer @ ContentSquare
Clément Pinard
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022
TensorFlow implementation of AlexNet and its training and testing on ImageNet ILSVRC 2012 dataset

AlexNet training on ImageNet LSVRC 2012 This repository contains an implementation of AlexNet convolutional neural network and its training and testin

Matteo Dunnhofer 161 Nov 25, 2022
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022
Molecular AutoEncoder in PyTorch

MolEncoder Molecular AutoEncoder in PyTorch Install $ git clone https://github.com/cxhernandez/molencoder.git && cd molencoder $ python setup.py insta

Carlos Hernández 80 Dec 05, 2022
A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

jedibobo 3 Dec 28, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Haiping Wang 80 Dec 15, 2022
SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation

SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation This repo is the official implementation for SegTransVAE. Seg

Nguyen Truong Hai 4 Aug 04, 2022
Siamese TabNet

Raifhack-DS-2021 https://raifhack.ru/ - Команда Звёздочка Siamese TabNet Сиамская TabNet предсказывает стоимость объекта недвижимости с price_type=1,

Daniel Gafni 15 Apr 16, 2022
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a

9 Nov 21, 2022
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing

CSGStumpNet The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing Paper | Project page

Daxuan 39 Dec 26, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022